695 research outputs found

    A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna. Part 2: Metamaterials and Many More

    Get PDF
    This two‐part article presents a review of different techniques of mutual coupling (MC) reduction. MC reduction is a primary concern while designing a compact multiple‐input‐multiple‐output (MIMO) antenna where the separation between the antennas is less than λ0/2, that is, half of the free‐space wavelength. The negative permittivity and permeability of artificially created materials/structures (Metamaterials) significantly help reduce MC among narrow‐band compact MIMO antenna design elements. In this part two of the review paper, we will discuss techniques: Metamaterials; Split‐Ring‐Resonator; Complementary‐Split‐Ring‐Resonator; Frequency Selective Surface, Metasurface, Electromagnetic Band Gap structure, Decoupling and Matching network, Neutralization line, Cloaking Structures, Shorting vias and pins and few more

    Review on the Design of the Isolation Techniques for UWB-MIMO Antennas

    Get PDF
    Ultra wide band - Multiple Input Multiple Output antenna technology provides higher data rates and the combination of the ultra wide band (UWB) and the multiple input multiple output (MIMO) technologies provides a solution for the demand of still higher data rates i.e. in excess of 3 Gb/sec in the future.  As the antenna technologies are improving, the size of the MIMO antenna is growing smaller and smaller. Placing the antenna elements in such close proximity increases the coupling between them. Various isolation techniques have to be introduced between the antenna elements to decrease the coupling and to improve the isolation. A study of the various isolation enhancement techniques have been made in this review. It analyses the various isolation enhancement methods such as using orthogonal polarization, parasitic elements, varied decoupling structures, defected ground structures (DGS), neutralization line (NL) and finally by using metamaterials. Metamaterials is a technology to perk up the isolation between the antenna elements. Split ring resonator (SRR) behaves as a metamaterial and it is used as an isolation mechanism in this study. The antennas are simulated and the results are compared. The method using parasitic elements gives the highest isolation of 35 dB and it is 5 dB better than the methods using orthogonal polarization and using the decoupling structure. The performance of all the antennas satisfies the conditions for minimum isolation. The envelope correlation coefficient is nearly zero in all the antennas and it implies good diversity performance. The diversity gain is also calculated for the various antennas and it satisfies good diversity performance. The bandwidth of the antennas is in the UWB frequency range and they have a fractional bandwidth above the required value of 1.09. The capacity loss for all the antennas is very low and the antennas using defected ground structure and the decoupling structure gives very low capacity loss

    Dielectric Resonator Antennas: Applications and developments in multiple-input, multiple-output technology

    Get PDF
    This article presents a comprehensive review of multiple-input, multiple-output (MIMO) dielectric resonator antennas (DRAs) that have evolved in the past decade. In addition to the major challenges faced during designing an MIMO DRA, this article also discusses research gaps that must be filled in the future. Exploring the advantages of DRAs, numerous novel designs have been proposed in the last few years

    Design and Development of Ultrabroadband, High-Gain, and High-Isolation THz MIMO Antenna with a Complementary Split-Ring Resonator Metamaterial

    Get PDF
    The need for high-speed communication has created a way to design THz antennas that operate at high frequencies, speeds, and data rates. In this manuscript, a THz MIMO antenna is designed using a metamaterial. The two-port antenna design proposed uses a complementary splitring resonator patch. The design results are also compared with a simple patch antenna to show the improvement. The design shows a better isolation of 50 dB. A broadband width of 8.3 THz is achieved using this complementary split-ring resonator design. The percentage bandwidth is 90%, showing an ultrabroadband response. The highest gain of 10.34 dB is achieved with this design. Structural parametric optimization is applied to the complementary split-ring resonator MIMO antenna design. The designed antenna is also optimized by applying parametric optimization to different geometrical parameters. The optimized design has a 20 ÎŒm ground plane, 14 ÎŒm outer ring width, 6 ÎŒm inner ring width, and 1.6 ÎŒm substrate thickness. The proposed antenna with its broadband width, high gain, and high isolation could be applied in high-speed communication devices

    Study of metamaterial resonators for decoupling of a MIMO-PIFA system

    Get PDF
    The impact of several subwavelength metamaterial particles based on split-ring inspired resonators to enhance the decoupling level in a two planar inverted-F antenna multi-input multi-output printed circuit board system is investigated. The Sparameters, antenna performance, electric and magnetic field distribution are simulated and analyzed by means of the full 3D electromagnetic simulator CST Microwave Studio at 2.45 GHz. The obtained results show a notable coupling reduction level in the three analyzed cases and a trade-off between isolation/antenna performance/area.Postprint (author's final draft

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Electrical Size Reduction of Microstrip Antennas by Using Defected Ground Structures Composed of Complementary Split Ring Resonator

    Get PDF
    In this study the effects of using defected ground structures (DGS) composed of a complementary split ring resonator (CSRR) and CSRR with dumbbell (CSRR-D) for rectangular microstrip antennas are investigated. On this aim, two different antennas, which are Antenna B having CSRR etched DGS and Antenna C having CSRR-D etched DGS are designed and fabricated in comparison with the ordinary rectangular patch antenna, which is Antenna A. In both Antenna B and C, CSRR structures are etched in the same position of the ground planes. On the other hand, another ordinary microstrip antenna, called Antenna D, is designed at resonance frequency of Antenna C. For the characterization, resonance frequencies, voltage standing wave ratios, percentage bandwidths, gains, ka values and gain radiation patterns are investigated both in simulations and experiments. The numerical analyses show that 29.39 % and 44.49 % electrical size reduction (ESR) ratios are obtained for Antenna B and Antenna C, respectively in comparison to Antenna A. The experimental results verify the ESR ratios with 29.15 % and 44.94 %. Supporting, Antenna C promises 68.12 % physical size reduction (PSR) as it is compared with Antenna D. These results reveal that Antenna C is a good alternative for DGS based microstrip electrically small antennas

    A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna. Part 1: DGSs and Parasitic Structures

    Get PDF
    This two-part article presents a review of different techniques of mutual coupling (MC) reduction. MC is a major issue when an array of antennas is densely packed. When the separation between the antennas i
    • 

    corecore