1,937 research outputs found

    GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy

    Full text link
    Online adaptive radiation therapy (ART) has great promise to significantly reduce normal tissue toxicity and/or improve tumor control through real-time treatment adaptations based on the current patient anatomy. However, the major technical obstacle for clinical realization of online ART, namely the inability to achieve real-time efficiency in treatment re-planning, has yet to be solved. To overcome this challenge, this paper presents our work on the implementation of an intensity modulated radiation therapy (IMRT) direct aperture optimization (DAO) algorithm on graphics processing unit (GPU) based on our previous work on CPU. We formulate the DAO problem as a large-scale convex programming problem, and use an exact method called column generation approach to deal with its extremely large dimensionality on GPU. Five 9-field prostate and five 5-field head-and-neck IMRT clinical cases with 5\times5 mm2 beamlet size and 2.5\times2.5\times2.5 mm3 voxel size were used to evaluate our algorithm on GPU. It takes only 0.7~2.5 seconds for our implementation to generate optimal treatment plans using 50 MLC apertures on an NVIDIA Tesla C1060 GPU card. Our work has therefore solved a major problem in developing ultra-fast (re-)planning technologies for online ART

    A new column-generation-based algorithm for VMAT treatment plan optimization

    Full text link
    We study the treatment plan optimization problem for volumetric modulated arc therapy (VMAT). We propose a new column-generation-based algorithm that takes into account bounds on the gantry speed and dose rate, as well as an upper bound on the rate of change of the gantry speed, in addition to MLC constraints. The algorithm iteratively adds one aperture at each control point along the treatment arc. In each iteration, a restricted problem optimizing intensities at previously selected apertures is solved, and its solution is used to formulate a pricing problem, which selects an aperture at another control point that is compatible with previously selected apertures and leads to the largest rate of improvement in the objective function value of the restricted problem. Once a complete set of apertures is obtained, their intensities are optimized and the gantry speeds and dose rates are adjusted to minimize treatment time while satisfying all machine restrictions. Comparisons of treatment plans obtained by our algorithm to idealized IMRT plans of 177 beams on five clinical prostate cancer cases demonstrate high quality with respect to clinical dose–volume criteria. For all cases, our algorithm yields treatment plans that can be delivered in around 2 min. Implementation on a graphic processing unit enables us to finish the optimization of a VMAT plan in 25–55 s.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98593/1/0031-9155_57_14_4569.pd

    Accounting for the tongue-and-groove effect using a robust direct aperture optimization approach

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98733/1/MPH001266.pd

    Towards on-line plan adaptation of unified intensity-modulated arc therapy using a fast-direct aperture optimization algorithm

    Get PDF
    External beam radiotherapy (EBRT) plays a vital role in the treatment of cancer, with close to half of all cancer patients receiving EBRT at some point over their course of treatment. Although EBRT is a well-established form of treatment, there are a number of ways in which EBRT could still be improved in terms of quality and efficiency for treatment planning and radiation dose delivery. This thesis reports a series of improvements made to EBRT. First, we developed and evaluated a new treatment planning technique called unified intensity-modulated arc therapy (UIMAT) which combines the optimization and delivery of rotational volumetric modulated arc therapy (VMAT) and fixed-gantry intensity-modulated radiation therapy (IMRT). When retrospectively compared to clinical treatment plans using VMAT or IMRT alone, UIMAT plans reduced the dose to nearby critical structures by as much as 23% without compromising tumour volume coverage. The UIMAT plans were also more efficient to deliver. The reduction in normal tissue dose could help lower the probability of treatment-related toxicities, or alternatively could be used to improve tumour control probability, via dose escalation, while maintaining current dose limits for organs at risk. Second, we developed a new fast inverse direct aperture optimization (FIDAO) algorithm for IMRT, VMAT, and UIMAT treatment planning. FIDAO introduces modifications to the direct aperture optimization (DAO) process that help improve its computational efficiency. As demonstrated in several test cases, these modifications do not significantly impact the plan quality but reduced the DAO time by as much as 200-fold. If implemented with graphical processing units (GPUs), this project may allow for applications such as on-line treatment adaptation. Third, we investigated a method of acquiring tissue density information from cone-beam computed tomography (CBCT) datasets for on-line dose calculations, plan assessment, and potentially plan adaptation using FIDAO. This calibration technique accounts for patient-specific scattering conditions, demonstrated high dosimetric accuracy, and can be easily automated for on-line plan assessment. Collectively, these three projects will help reduce the normal tissue doses from EBRT, improve the planning and delivery efficiency, and pave the way for application like on-line plan assessment and adaptive radiotherapy in response to anatomical changes

    Enabling non-isocentric dynamic trajectory radiotherapy by integration of dynamic table translations.

    Get PDF
    OBJECTIVE The purpose of this study is to develop a treatment planning process (TPP) for non-isocentric dynamic trajectory radiotherapy (DTRT) using dynamic gantry rotation, collimator rotation, table rotation, longitudinal, vertical and lateral table translations and intensity modulation and to validate the dosimetric accuracy. APPROACH The TPP consists of two steps. First, a path describing the dynamic gantry rotation, collimator rotation and dynamic table rotation and translations is determined. Second, an optimization of the intensity modulation along the path is performed. We demonstrate the TPP for three use cases. First, a non-isocentric DTRT plan for a brain case is compared to an isocentric DTRT plan in terms of dosimetric plan quality and delivery time. Second, a non-isocentric DTRT plan for a craniospinal irradiation (CSI) case is compared to a multi-isocentric intensity modulated radiotherapy (IMRT) plan. Third, a non-isocentric DTRT plan for a bilateral breast case is compared to a multi-isocentric volumetric modulated arc therapy (VMAT) plan. The non-isocentric DTRT plans are delivered on a TrueBeam in developer mode and their dosimetric accuracy is validated using radiochromic films. MAIN RESULTS The non-isocentric DTRT plan for the brain case is similar in dosimetric plan quality and delivery time to the isocentric DTRT plan but is expected to reduce the risk of collisions. The DTRT plan for the CSI case shows similar dosimetric plan quality while reducing the delivery time by 45% in comparison with the IMRT plan. The DTRT plan for the breast case showed better treatment plan quality in comparison with the VMAT plan. The gamma passing rates between the measured and calculated dose distributions are higher than 95% for all three plans. SIGNIFICANCE The versatile benefits of non-isocentric DTRT are demonstrated with three use cases, namely reduction of collision risk, reduced setup and delivery time and improved dosimetric plan quality
    • …
    corecore