18 research outputs found

    A visual demonstration of convergence properties of cooperative coevolution

    Get PDF
    We introduce a model for cooperative coevolutionary algorithms (CCEAs) using partial mixing, which allows us to compute the expected long-run convergence of such algorithms when individuals ’ fitness is based on the maximum payoff of some N evaluations with partners chosen at random from the other population. Using this model, we devise novel visualization mechanisms to attempt to qualitatively explain a difficult-to-conceptualize pathology in CCEAs: the tendency for them to converge to suboptimal Nash equilibria. We further demonstrate visually how increasing the size of N, or biasing the fitness to include an ideal-collaboration factor, both improve the likelihood of optimal convergence, and under which initial population configurations they are not much help

    Introducción a las técnicas de aprendizaje automático (parte II): entorno de competición

    Get PDF
    El presente artículo describe la parte práctica de la asignatura de formación en Aprendizaje Automático, en el entorno de nuestro grupo de investigación. Se estructura como una competición entre distintos grupos de trabajo, lo cual sienta las bases para motivar al alumno y establecer un marco común de comparación de distintas metodologías de Aprendizaje Automático

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications

    Robustness in cooperative coevolution

    Full text link

    Evolving board evaluation fuctions for a complex strategy game

    Get PDF
    The development of board evaluation functions for complex strategy games has been approached in a variety of ways. The analysis of game interactions is recognized as a valid analogy to common real-world problems, which often present difficulty in designing algorithms to solve them. Genetic programming, as a branch of evolutionary computation,provides advantages over traditional algorithms in solving these complex real-world problems in speed, robustness and flexibility. This thesis attempts to address the problem of applying genetic programming techniques to the evolution of a strategy for evaluating potential moves in a one-step lookahead intelligent agent heuristic for a complex strategy based game. This is meant to continue the work in artificial intelligence which seeks to provide computer systems with the tools they need to learn how to operate within a domain, given only the basic building blocks. The issues surrounding this problem are formulated and techniques are presented within the realm of genetic programming which aim to contribute to the solution of this problem. The domain chosen is the strategy game known as Acquire, whose object is to amass wealth while investing stock in hotel chains and effecting mergers of these chains as they grow. The evolution of the board evaluation functions to be used by agent players of the game is accomplished via genetic programming. Implementation details are discussed, empirical results are presented, and the strategies of some of the best players are analyzed. Future improvements on these techniques within this domain are outlined, as well as implications for artificial intelligence and genetic programming.M.S., Computer Science -- Drexel University, 200
    corecore