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Abstract
Evolving Board Evaluation Functions for a Complex Strategy Game

Lisa Patricia Anthony
William C. Regli, Ph.D.

The development of board evaluation functions for complex strategy games has been

approached in a variety of ways. The analysis of game interactions is recognized as a

valid analogy to common real-world problems, which often present difficulty in designing

algorithms to solve them. Genetic programming, as a branch of evolutionary computa-

tion, provides advantages over traditional algorithms in solving these complex real-world

problems in speed, robustness and flexibility. This thesis attempts to address the problem

of applying genetic programming techniques to the evolution of a strategy for evaluating

potential moves in a one-step lookahead intelligent agent heuristic for a complex strategy-

based game. This is meant to continue the work in artificial intelligence which seeks to

provide computer systems with the tools they need to learn how to operate within a do-

main, given only the basic building blocks.

The issues surrounding this problem are formulated and techniques are presented within

the realm of genetic programming which aim to contribute to the solution of this problem.

The domain chosen is the strategy game known as Acquire, whose object is to amass wealth

while investing stock in hotel chains and effecting mergers of these chains as they grow.

The evolution of the board evaluation functions to be used by agent players of the game is

accomplished via genetic programming. Implementation details are discussed, empirical

results are presented, and the strategies of some of the best players are analyzed. Future

improvements on these techniques within this domain are outlined, as well as implications

for artificial intelligence and genetic programming.
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Chapter 1: Introduction

1.1 Problem Statement

This thesis attempts to address the problem of applying genetic programming techniques to

the evolution of a strategy for evaluating potential moves in a one-step lookahead intelligent

agent heuristic to play the game Acquire.

Determining an appropriately intelligent strategy for an agent player is challenging for

several reasons: first, there is often no proven ideal strategy for a given game, making it

difficult to ascertain the degree of optimality one can expect to attain; second, strategy-

based games are complex in the gameplay interactions and the number of possible moves

is large (and hence so is the branching factor for any search approach to the problem);

third, even where expert knowledge may be available, the inclusion of expert knowledge

is wrought with problems itself. Games such as Monopoly and chess require a great deal

of knowledge, planning, and past experience in order to play an effective game against a

worthy opponent. When asked to outline a detailed heuristic to perform a task, however,

experts in a given domain may often forget certain key aspects which are fundamental to

the problem because they seem so trivial. They may not remember other aspects which

come into play only during special circumstances or rarer operations. This can be termed

the “expert dilemma” and caused many problems for the designers of expert systems in the

1980s, which is well-known, and supported by statements in [17].

Therefore, an acceptable alternative to teaching the computer how to operate within

a given domain can be to teach the computer how to learn to operate within that domain.

Simple versions of this are case-based planners; more complex methods include neural net-

works, decision trees, and reinforcement learning. Another interesting technique is that of

evolutionary computation, specifically, genetic algorithms and genetic programming. Ge-
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netic programming is the process of providing the computer with the building blocks to use

in constructing some solution to a problem which the human programmer cannot himself

solve, or can’t solve in an acceptable time frame (i.e., exponential-time algorithms), and

the means to evaluate the degree of “fitness” of a proposed solution. Genetic programming

has been praised as a natural approach to developing algorithmic behaviors [27].

Acquire, a strategy game involving the building of and investing in hotel chains and

effecting mergers of these chains to gain cash rewards, is a game whose dynamics seem

comparable to other games that have been approached via genetic programming. In studies

on other domains such as Backgammon, the “ergodicity” of the game (the reversibility of

the possible outcome at any time during the game due to the randomness of dice rolls),

means that the agents playing can actually learn from the progress of a game even when

they lose [31]. Acquire has a similar random aspect, and this theoretically allows the ge-

netic programming to drive forward toward some optimum solution, as more and more of

the search space is explored due to the changing dynamics within different games. Aspects

of Acquire’s rules of gameplay make this domain a very interesting application of the use

of genetic programming techniques to yield competent player strategies.

1.2 Overview of Approach

There are several steps involved in preparing a genetic programming specification of a prob-

lem. These are to enumerate, as outlined in [1], the architecture of programs to be evolved,

the set of primitive programmatic ingredients, the fitness function, and the parameters for

controlling the run.

In the case of the Acquire game, what are the building blocks? What makes an individ-

ual strategy more “fit” than another? Those familiar with the Acquire domain can recognize

that, during gameplay, one makes use of observations about the state of the world to de-

cide the potential benefit of possible moves. Human players also use knowledge about past

moves and theories about the other players’ strategies in their analysis, but these aspects



3

are not incorporated into the problem addressed in this thesis, as we have used a more ba-

sic approach. Probabilistic lookaheads and the concept of utility of certain moves can be

built into future endeavors on the topic. In many applications of reinforcement learning or

autonomous agents, the environment is not fully accessible or static. Simplistic “toy prob-

lems” which allow the agent to operate with full information about the environment are not

representative of most real-world applications of autonomous mobile robots or in certain

games, where the other players’ hands are unknown. Human memory also is not perfect,

and it is preferable not to allow agent players to maintain perfect memory of the progress

of the game, so as not to give them an unrealistic, unfair advantage.

For these reasons, and also because the agents only use a one-step lookahead, and do

not incorporate any long-term planning, our Acquire agents can only make a decision about

a move to make based on the resultant state of the world after that move would be made, in

other words, the utility of that move for the agent.

Although Acquire’s outcome depends on a simple economic utility model (i.e., whichever

agent has amassed the most money wins the game), providing only information about how

much cash is on-hand would be an ineffective strategy, since in order to win money, one

must spend money. (Section 3.1.1 has further details on the Acquire game.) Therefore, we

provide our agents with a larger function set based on the parameters about the world which

are available to the agent, with the intent that this will be more robust than simple reasoning

based on cash assets. We hope to evolve an implicit “lookahead” based on these param-

eters about the world which the agent may combine in interesting ways via the evolution

process. The key to this is providing the functions to extract the appropriate information

about the world to allow this projection to take place, without imposing human biases on

the elements to consider.

We considered several methods of evaluating the fitness of individuals, including the

number of wins in the 10 games played against opponents, the total money earned in the se-

ries of 10 games, and, ultimately, the ratio of money earned by the agent to the total amount
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of money earned in that game by the players. It is important to note that the evolution of

strategies against other agents which are not themselves optimal will not necessarily lead

to an optimal solution. Rather, the functions will only evolve enough to beat the provided

opponents, be they random or hard-coded. In fact, hard-coded opponents are particularly

ill-suited for use in GP because the population will simply evolve to exploit weaknesses

in the hard-coded strategy, and are therefore brittle when placed against other strategies

they had not faced before [27, 31]. Coevolution is designed to force the population toward

optimality without falling into local minima in this way, by pitting the evolving strategies

against other individuals in the same population (or in the other population, in the case of

two simultaneously evolving populations). Therefore, we evolve one population of indi-

viduals whose fitness is judged on the basis of a given number of games played against

randomly-selected opponents from the population, similar to the approach taken by [6].

1.3 Outline of Thesis

Chapter 1 is this introduction to the problem and our approach. Chapter 2 presents some

background information on game theory and genetic programming, including coevolution.

Chapter 3 discusses the approach we took to setting up Acquire as a genetic programming

problem, and certain adaptations which were made, both to the genetic programming tech-

nique and to the Acquire game rules and operation.

Chapter 4 presents the results from our two genetic programming runs, and some dis-

cussion. Finally, Chapter 5 offers conclusions as to the contributions of this research, as

well as its limitations, and a large helping of future and related work, pointing to avenues

which might improve performance in this domain.
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Chapter 2: Background

2.1 The Analysis of Game Interactions and Board Evaluation Functions

The study of games has been used to approximate problems in mathematics, economics,

evolution, social interactions, and many other areas, since the first half of the 20th cen-

tury [44]. A “game” is essentially any situation in which a decision has to be made [12].

The players determine how to allocate their resources based on stimuli from the other

player(s) or the environment, and do so when it is their move (or turn, as in parlor games),

choosing from a variety of available plays. Each player accumulates payoffs, which can

take any form depending on the domain, and whether the game is competitive or cooper-

ative. In competitive games, payoffs to players vary inversely—when one player wins an

amount, the other player(s) either lose that amount or are penalized by not having been

able to win that amount themselves; in cooperative games, the payoffs vary directly, and

the players act as a team or other coordinating unit. Games can also be neutral, wherein

the payoffs to each player are unrelated, as in single-player games against chance, nature

or the environment [7], known as “disinterested players” [13].

During the course of the game, players make use of certain strategies to make their

decision among the various plays available to them in any particular move. In typical

computer approaches to the development of game strategies, certain conditions apply: the

game is of full information (in that the full range of plays available to each player is known

to all); it is competitive and zero-sum (in that the payoffs to one player are the other player’s

losses, or that the players’ interests are diametrically opposed [13]); and it is not necessarily

linear (in that the outcome of the game depends on a series of plays rather than only one).

In our approach, however, we simplify the game construct (to fit Acquire’s model) to

be that of a two-player game where there are a finite range of available plays at each move,

and where the turns proceed in alternating fashion, rather than simultaneously. Our domain
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is not a game of full information, and it is stochastic in nature. This means that a minimax

strategy, whose purpose is to reduce (minimize) the (maximum) damages an opponent can

do in a given play [44], is not appropriate to our domain. The minimax strategy does best in

simple zero-sum games where an equilibrium point exists such that the minimax is the same

point from both players’ perspectives, forcing rational players to make the decisions at the

equilbrium point. In games which incorporate a random element such as a die, however,

there will be no equilibrium point, and trying to decide a move based on minimax does

not help. Acquire is a zero-sum game (also called “constant sum” [12]), but not because

there is a fixed amount of money to win, which is where the term arose. It is still zero-sum

because an Acquire player cannot simply let his opponent play unchecked. For a player to

ensure that he has the most assets at the end of the game himself, he must also curb the

winnings of his opponent. Their interests are in this way “diametrically opposed”.

A very good analogy to the Acquire game scenario which illustrates how the game fits

the zero-sum paradigm is presented in [13] on pages 45 through 46: the best strategies

for two political parties to use in trying to win state electoral votes during presidential

elections. Each state is independent of each other, and so the contest for the votes in New

Jersey is separate from the contest in California. But each party’s candidate must win a

majority of the individual contests to win the general contest for the presidency. Each party

allocates resources for campaigning and publicity within states and must determine the

best distribution strategy. As we will discuss in Section 3.1.1, this scenario is similar to the

contests for majority stockholder in the individual chains on the Acquire board. There can

be only one winner, so both players’ interests are clearly “diametrically opposed”, and the

players must choose how to allocate their resources in order to win the contest for highest

buy-in into the most chains on the board in order to win the game.

Regarding a strategy as a decision-making plan on a global game scale when the game

can be made up of many small contests implies that each particular move can be approached

independently. The ability to evaluate board positions as being either advantageous or
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disadvantageous to a player’s status in the game is part of a successful strategy for most

complex strategy-based games. For our purposes, a strategy-based game is one in which

there is a choice of moves and the outcome of the game depends on the combination of the

values of a series of plays, as opposed to simpler games where the choice of next move is

determined solely by the rules of the game or by chance (for instance, roulette). Often, a

board evaluation function is chosen as a representation of the player’s strategy or heuristic

for gameplay; the player weighs the moves available to him based on the evaluation of

the board state (either now, or as a result of the move being considered) and chooses the

one with the highest value. This approach can succeed for even the most complex games

because, in any finite game, each position or world state represents either a win for the

player under consideration, a loss for that player, or a draw [13]. For this reason, one can

develop a strategy for a game which is based on an analysis of the current board position’s

advantage to the current player.

Natural evolution is itself often viewed as a game, where the players are the biologi-

cal species competing for resources in nature, and each adaptation is a move, the payoff

being which species survives and reproduces [40]. The analogy between games and evolu-

tion leads to interesting possibilities in applying natural evolutionary techniques to certain

games, especially since many games do not fit into the simplified minimax paradigm dis-

cussed above. These games may be solvable via certain heuristics which are not obvious,

and computers can be used as tools to find strategies for these more difficult games. Even

for games where minimax can be performed, but there is interest in reducing computa-

tional complexity caused by the high branching factor, as in Checkers and Backgammon,

evolutionary algorithms yield advantages.
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2.2 Evolutionary Computation, Genetic Programming and Coevolution

Machine learning is the larger umbrella under which evolutionary computation and genetic

programming sit. Two areas of artificial intelligence of relevance are knowledge-based ap-

proaches, wherein we tell the computer precisely how to perform a given task; and machine

learning, wherein we tell the computer “precisely how to learn” how to perform tasks (p.

8) [4]. Machine learning is often defined as the study of various techniques by which to

teach computers to learn to do certain things, “without explicit representation of symbolic

knowledge” and hand-coding by the programmer[37]. Evolutionary computation draws on

analogies from Darwinian approaches to biology, ecology and genetics to describe how the

computer system “evolves” toward the correct answer, being given only a means by which

to determine the appropriateness of a certain response.

Evolutionary computation offers advantages over traditional algorithms when attempt-

ing to solve real-world problems for which there may not be a known optimal solution or

even an optimal algorithm to use in solving it. Darwin’s model of evolution essentially de-

fines a complex search and optimization mechanism, designed to allow biological species

to overcome the challenges of nature, including chaos, chance, temporality, and nonlin-

earity [17]. These challenges are often the ones which make the design of algorithms for

real-world problems so intractable. Therefore, by virtue of its analogy with natural evolu-

tionary systems, evolutionary computation possesses several distinct characteristics which

make it a powerful choice of technique for such problems; several of these were discussed

by Fogel in [17]:

� conceptual simplicity—the complex mechanisms of genetics are brilliant in their

simplicity and therefore easy to follow;

� broad applicability—the genetics and evolution analogy has been found to extend to

all areas of real-world optimization problems;

� out-performance of classical algorithms and ability to solve problems with no known
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solutions—exponential-complexity problems can be solved or approximated in much

less time by evolutionary computation methods;

� potential to hybridize with knowledge-based approaches—thereby taking advantage

of what expert knowledge may exist in a domain;

� self-optimization—the population proceeds toward an optimum without the need for

human intervention or guidance.

The genetic programming (GP) paradigm was first described by Nichael Cramer [10],

and later expounded upon by John R. Koza in his 1992 book, Genetic Programming: On

the Programming of Computers by Means of Natural Selection[23]. GP was formulated as

an extension of genetic algorithms [20]. Two good references on the subject are [4, 29].

In GP, the system optimizes a computer program or function to solve a given problem by

generating individual programs or functions and rating their fitness to the solution, choosing

those best fit to survive and allowing them to reproduce. The programs, also known as

genomes, are made up of atoms known as terminals (e.g., state variables or functions of no

arguments) and nonterminals (e.g., functions which take arguments). The first generation

of GP is produced randomly, the individuals are tested via a given “evaluation function” or

“fitness function”, and they are then assigned a score. Next, those individuals with higher

fitness are selected via certain means and allowed to pass on their genetic material to the

following generation via certain procreation operations. See Figure 2.1 for an illustration

of the GP life cycle, after [30, 17].

Initialize
population with

random
individuals

Evaluate fitness of
population (each

individual)

Select individuals
for reproduction
based on fitness

Create new
generation via
reproduction of

the most-fit
individuals

Test termination
criteria (have we

solved the
problem?)

Figure 2.1: Control Flow of the Genetic Programming Paradigm



10

Koza’s kernel for GP problems was written in CommonLISP; LISP S-expressions are

natural syntactic ways of representing these individuals’ genomes, since they can be repre-

sented as parse trees and easily manipulated. The LISP code fragments which make up the

individuals form GP trees, such as the one shown in Figure 2.2. That example shows the

following LISP statements:

(+ 4 5)

(if-chain-2-is-safe-from-merging

(- (price-of-chain-1)

(payoff-value-to-player-of-chain-1))

(payoff-value-to-player-of-chain-1))

These statements are built from terminals and nonterminals as mentioned above. Each

internal node is a nonterminal, which takes as arguments its children. Any number of

arguments is permitted, although here only binary functions are shown. The leaves of the

GP tree are terminals.

+

4 5

IF-CHAIN-2-IS-
SAFE-FROM-

MERGING

-

PAYOFF-
VALUE-TO-

PLAYER-OF-
CHAIN-1

PRICE-OF-
CHAIN-1

PAYOFF-
VALUE-TO-

PLAYER-OF-
CHAIN-1

Figure 2.2: Examples of Parse Trees for Various LISP S-expressions
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The evaluation function (fitness function) is also provided to the GP system during

problem specification. After the random initialization of the population in the first gener-

ation, the GP algorithm determines the fitness of each individual via this fitness function,

selects the most fit genomes, and breeds them to a new generation. The fitness function

is highly problem-specific. In symbolic regression (the interpolation of a mathematical

function based on a set of input and output values), for example, the fitness function is

generally the number of data points the individual matches within some margin of error.

In certain games, tournaments among the individuals are run and the fitness of each indi-

vidual is defined to be the rank in the tournament that individual attains. The algorithm

terminates when an optimally fit individual has been found, or when the predetermined

number of generations has completed. Which termination criteria is more appropriate is

also problem-specific.

The breeding operators which are most commonly used are reproduction, crossover and

mutation. The reproduction operator chooses a relatively fit individual and passes it on to

the next generation unchanged. When the most fit individuals, or some fraction thereof,

are reproduced for every generation, it is called elitism. In crossover, shown in Figure 2.3,

subtrees within two individuals are swapped at random; the subtrees do not have to be of

the same size or occur in the individuals in the same position in the genome. Mutation,

shown in Figure 2.4, is generally one-point mutation, and involves the replacement of a

given subtree in the genome with some randomly generated subtree (not necessarily of the

same depth as the tree it is replacing).

Some researchers may be tempted to dismiss the techniques of GP as little more than

blind random search. Indeed, it is true that genetic programming can be thought of as a

guided “beam search”, where the algorithm is limited to areas of the search space which

satisfy a certain criteria; here, the fitness function acts as the beam [23]. The selection and

reproduction operators open new areas of the search space to be explored by instantiating

potential solutions within these subspaces to be considered. Consider that the solution(s)
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Figure 2.3: Examples of One-Point Crossover at a Function Point in a Parse Tree

to the type of problems genetic programming addresses are typically only one or a few

points in a space with a vast number of possibilities, and these possibilities are determined

by the number of possible programs which can be generated by the given set of terminals

and nonterminals based on the branching factor determined by arguments taken by each

nonterminal and by the allowable depth of individuals. While typical GP techniques may

examine up to 10,000 or 100,000 individuals [28], this is still a far smaller number than the

total number of possible individuals. Of the total number of individuals, vast stretches of

the search space are filled with completely unfit individuals which cannot lead to promising

end results. The GP evaluation loop acts as both a filter and a lens, sifting out areas of

the search space which are unprofitable to explore and focusing the progress of evolution
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Figure 2.4: Examples of One-Point Mutation of a Parse Tree

in directions which lie along certain key paths through the space of possibilities. For a

more in-depth discussion of this and other arguments supporting GP as an independent

improvement over blind random search, see Chapter 9 of Koza’s 1992 book [23].

GP was first used for symbolic regression, that is, the interpolation of a mathematical

function based on certain data points. Individuals are scored based on the number of the

data points they can match or approximate within some error margin. GP has had much

success evolving the optimal solution, or individuals which are functionally equivalent to

the optimal solution, as the generations progress. Some problems, however, do not have

an easily available optimal solution or expert player (as in the case of game strategies). In

this case, a fixed fitness function may not be appropriate. Coevolution has been proposed

as a means by which to avoid the paradoxical need for an optimal solution while trying to

evolve one [33]. Coevolution allows the population to evolve by competing against each

other; this causes the problem to become more difficult naturally as the individuals in the

population improve [25].

There are several different coevolution paradigms. The first is modeled after natural

coevolution in the biological/ecological world, wherein two separate populations (i.e., two
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separate species) balance the relationship between themselves, as in predator-prey relation-

ships. In this case, the fitness of one population is determined by how well it performs

(survives) against the other population. This sort of coevolution is seen throughout the nat-

ural world, and amounts to a sort of biological “arms race” [21], meaning both populations

progress toward some unknown optimum, compounding adaptation upon adaptation. As

one species of plant develops a tough outer shell to resist attacks by a certain insect preda-

tor, the species of insect develops a stronger mandible. The plant then develops a poison to

kill the insect, but ultimately the insect develops an immunity to this poison, and so on, ad

infinitum (example from [23]).

A second type of coevolution is also called “self-play”, wherein the population’s fitness

is determined by competition amongst its own individuals [5]. This is analogous to resource

competition in nature. This is the type of coevolution we chose to use; it is more logical

in situations where the competition is symmetric. In a predator-prey competition, the re-

lationship is not symmetric: each population has a different goal (the predator attempts to

catch the prey, and the prey attempts to elude the predator). In many game domains, how-

ever, the competition is symmetric such that neither player has an advantage over the other

merely by virtue of the domain constraints. While some games have distinct first-player

advantages, Acquire is not one of these.

However, the changing fitness function that coevolution provides as an advantage for

game domains presents a problem in itself: that of determining whether the population is

actually making any progress toward the optimum at all. Because the population is judged

against itself, as generations pass, the fitness function itself changes. This is called the “fit-

ness landscape” and alters as more fit individuals are judged against their neighbors, who

are also more fit (assuming the population is progressing). [9] describes what is known as

the “Red Queen effect” in coevolutionary interactions: the populations, by nature of their

interaction alter the fitness landscape. The effect is named after the Red Queen character in

Lewis Carroll’s Through the Looking Glass, who was always running but never getting any-
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where, because the landscape moved as she did. In essence, the horizon is always the same

distance away. A graph of the performance of the individuals over time, which is relative to

the others, may not have the upward slope we are expecting, even though progress may be

occurring. This problem was pointed out by [9, 35, 36]. As the population gets better, it’s

more difficult for them to beat each other. Techniques have been developed to monitor the

monotonicity of the progress more carefully [9]: tournaments of the population champions

against all previous champions (“ancestral opponent contests”); and distance metrics using

similarity of the parse trees developed (“genetic distance measures”). These visualization

and measurement techniques help allow the true progress of the population to emerge.

Coevolution presents the corollary issue of collusion, wherein the players “cooperate”

to repeatedly draw against one another, or wherein the problem scope becomes so narrow

over the course of generations that, effectively, the same game is played by the players

each time. In this case, one population has fallen into a subarea of the search space which

the second population does not use (cover), and in this way they will avoid competition.

Certain domains will prevent this naturally, however, via certain characteristics: ergodic-

ity (i.e., reversibility), stochasticity, and continuity of the domain combine to make this

simple partitioning of the search space not possible [5]. It follows from familiarity with

the Acquire domain that it fits these characteristics. The random elements of gameplay

alone ensures that different areas of the board will be developed at different times, forcing

strategies to be robust enough to compensate for various situations and interactions.
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Chapter 3: Approach: Architecture and Implementation

3.1 Core Acquire Agent System

The Acquire Agent System began as a simple distributed agent planning system imple-

mented in Common LISP and Java. The purpose of the project was to design and imple-

ment an agent system which was capable of playing the game Acquire, a trademark of

Hasbro, formerly Avalon Hill [19]. Eventually that system was modified and updated to

function as the core for the genetic programming experiments which are the object of this

thesis.

3.1.1 Discussion of Acquire Game Play

Acquire is a multi-player strategy game which has been called similar to Monopoly in

concept and objective (see Figure 3.1). For two to six players, the game’s objective is to

build up hotel chains on the board squares, buy stock in these chains, and effect mergers

which yield payoffs to those who own stock in the merged chains. The game operates on

the simple economic model of monetary gain; the player with the most money at the end

of the game is the winner.

Each agent’s turn proceeds in three phases. The first is the “place-tile” phase, during

which the player must choose one of the 6 labeled tiles he is holding in his hand and place

it on the corresponding square on the board. This tile placement can have one of several

effects: it can create a new hotel chain if it is adjacent to another tile which is not yet in

a chain; it can increase the size of an existing hotel chain; it can cause a merger if it is

adjacent to tiles which are in two or more different chains; or, most simply, it can be placed

alone on the board.

During a merger, the larger chain “wins” and consumes the smaller one. Each ho-

tel/tile which was previously in the now-defunct chain is subsumed by the larger chain.
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Figure 3.1: Diagram of the Acquire Board and Some Key Aspects of Game Play

Stockholder bonuses are distributed, one to the player which owns the most stock in the

now-defunct chain, and one to the runner-up. These bonuses are determined by the clas-

sification of that chain (low-value, medium-value, high-value) and its size at the time of

merging. Because the smaller chain is no longer active on the board (although it can be

played again in the future), all players who own stock in this chain may choose to either

sell their shares or trade them in for stock in the winning chain.

After the merger has been handled, the player’s turn continues. Next, the player must

decide what stock, if any, to buy in any of the hotel chains currently on the board (including

any created during this turn). Because the stockholder bonuses are the only way to make

money during the game, it is to the player’s advantage to be the majority stockholder in

as many chains as possible. In addition, whenever a player’s tile placement creates a new

chain, he receives one stock in that chain for free. After buying stock, the player draws a

new tile at random from the central pot. Play proceeds in this fashion until the end of the

game occurs under one of the following circumstances: a player plays his last tile; a chain

reaches a certain large size; or all chains are above a certain no-merger threshold.
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Due to the interaction between the place-tile phase and the buy-stock phase, there is a

heavy element of strategy to gameplay. Because the overall monetary assets of the players

at the end of the game determine who the winner is, and because the only way to gain

money is to receive shareholder bonuses for being the primary or secondary stockholder

when a chain merges, all decisions must revolve around what stock a player owns, and

how close to catching up in quantity one’s opponent(s) may be. Losing the majority share-

holder’s bonus in a valuable chain may have a severe damaging effect on the outcome of

that player’s game. If one player wins a majority shareholder’s bonus, the other players are

unable to win this money, so it is a loss in status as far as game standings. In the same way,

if one player buys three stocks in a particular chain, the other player has three less available

to him, which may lead to his eventual inability to gain a majority stockholder’s bonus in

that chain.

3.1.2 The System

The Acquire system is implemented in CommonLISP, modeled as a central game controller

and an agent interface for each player. Each agent-player has the ability to manipulate a

hypothetical state of the world which is updated after each event in the game. The Acquire

system uses some aspects of the CommonLISP Object System (CLOS) in an attempt to

reduce memory costs; however, space constraints were never a major concern. LISP speed

optimizations were also not focused on, in spite of the high computational demands of

genetic algorithms and genetic programming. To manage these high time demands, we

used a compiled version of the system when playing games with our evolved strategies.

This compiled version ran nearly a factor of 10 faster than the interpreted version, and this

time frame was sufficient for our needs.

To make the choice of what move to make in a given turn, an agent player considers

each possible move available to him on his current turn, both for the tile-placement decision

and the stock-purchase decision, and how this move would change the state of the world.
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He uses the evolved evaluation function on each of the resulting states of the world (i.e.,

one for each possible move), to determine which one is most advantageous to him. Three

types of agent players are supported by our Acquire system: a random agent picks moves

at random without considering how they may affect the world; a smart agent actually uses

a function to evaluate the state of the world; and a human agent requests input from the

user as to which move to make.

The game is by nature stochastic in that a player does not know what moves will be

available to him in the future due to the randomness of the tile drawing, or what moves

his opponents have available. We decided to focus on the evolution of a board evaluation

function, rather than a full-on strategy. The difference is that a strategy is typically thought

of as some organized set of condition-action pairs, where the condition is based on some

test or evaluation of the state of the world, and the action is the move to make. An evaluation

function, however, is simply the condition part of this; the evaluation function tests the state

of the world and returns a number representing the value assigned to that state of the world.

Because Acquire players have a widely varying choice of moves to make from turn to turn,

there is the desire to constrain moves the agent is allowed to consider to be legal moves

only. In evolving a strategy, the agent will be able to recognize what moves would be best

to make, but these may not necessarily be ones currently available to him. In the remainder

of this thesis, however, we will use the term “strategy”, so as not to be confused with the

genetic programming individual fitness evaluation function.

3.2 The Genetic Programming Extensions

The Acquire system was adopted as the core of a genetic programming problem in the vein

of those from Koza’s 1992 book [23]. Koza’s genetic programming kernel code, imple-

mented in CommonLISP, was taken and slightly adapted for our purposes. These adapta-

tions are explained below. When designing a problem to be solved via GP, there are several

fundamental steps. First, the architectural representation of the program or algorithm to
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be developed must be specified; in our approach, we use Koza’s LISP S-expression parse

trees. Second, one must provide the language elements the GP system can use in evolving

the programs (in our case, board evaluation functions). Third, one must provide the fitness

function to use in determining which individuals perform better at the given problem than

others, such as a metric based on the ability of certain individuals to win. Fourth and fi-

nally, one must define certain GP operation parameters which may have values specific to

the problem at hand [1]. The formulation of the Acquire strategy-evolution problem as a

GP problem drew on Koza’s explanation of the required elements for such a problem [23]:

The terminal set. Our intuition about the structure of the state-evaluation function which

we were evolving directed us to consider it as some combination of certain parameters

about the current state of the world; therefore, we decided to use these parameters as our

terminal set, to be combined with simple arithmetic operators. Anything which is visible

to a human player of Acquire at a given time point in the game, minus the effect of human

memory of opponent moves, is available to be queried by the smart agent. The program

evolved by the GP system is plugged into the Acquire system as the evaluation function

for one of the agent players, so the parameters are accessed via functions which the Ac-

quire system can execute during gameplay. See Appendix A for the complete table of all

terminals used and their descriptions.

The board-querying functions are of the form size-of-chain-1, size-of-chain-

2, distance-to-nearest-neighbor-of-chain-1,cash-held-by-player, and so

on, where chain-1 refers to the largest chain, chain-2 refers to the middle-sized chain,

and chain-3 refers to the smallest chain. The game actually uses seven possible hotel

chains, which would result in a combinatorial explosion of parameters to consider (over

50). The difficulty with this is the computational time it could take to evaluate the relation-

ships between these parameters. It is tempting to reduce the number of parameters based

on our own assumptions about which ones may be relevant to a given decision. However,
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once the decision has been made to allow the computer to evolve its own strategy, one can-

not make any judgments about what parameters about the world “don’t apply” to certain

move-making decisions. We made an initially rather arbitrary choice to reduce the problem

to allow only three possible hotels as described above, which decreases the computational

complexity considerably, while still allowing the system to use all possible observations

about the state of the world in fixing its strategy. As we later discovered with human play-

ers, though, the game with only three hotels is both slow and uneventful over long periods

of time, and the potential to earn money is drastically reduced. However, although the rules

of the game have been changed by this stipulation, the application of the GP technique is

the focus of this thesis, and the minor changes to the game which result from reducing the

number of hotel chains available do not affect the GP system’s evolutionary progress.

The function set. There is some precedence for a genetic programming approach to

evolving board evaluation functions for complex strategy games [16, 15]. The nonterminal

sets in these cases included conditional operators to reflect the complexity of the strategies

needed to play certain games (i.e., in certain combinations of situations, the board value

would be higher than in certain others, or perhaps two conflicting set of situations would

affect the value of a given state). However, our original idea was that this evaluation func-

tion we were evolving would be similar to a utility function. According to Russell and

Norvig [37], multi-attribute utility functions where the attributes are independent of each

other can be combined (in theory) via simple arithmetic functions. While we had intended

to explore the possibility of incorporating probabilistic reasoning in the strategy, the repre-

sentation utilized both by the GP system and the Acquire system did not lend itself readily

to the evolution of neural networks and other reinforcement learning techniques which have

been discussed in the literature (see Section 5.3).

However, we did want to enable complex strategizing based on less fundamental board

state operations. For example, if a player is the majority stockholder in chain X, and the
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move under consideration would merge chain X with another, larger chain, the resulting

board state should have a high value compared to one in which the player’s opponent owns

the majority. Therefore, in addition to the four basic arithmetic operators: +, -, *, and

div (where div is a protected division operator to guard against divide-by-zero errors),

we have also included three conditional operators that hinge on certain board states being

true. We did not simply include logical and decision operators like if, and, or, and not,

because this would have required strongly-typed GP in our implementation of the problem

(see Section 5.3 for more on this).

See Appendix A for a complete list of all functions used and their descriptions.

Problem-specific functions. Often, some domains require other functions which the GP

system uses to help in its creation of new individuals or its evaluation of them. In our

case, the entire Acquire system is used as the method of evaluation, and so it could be said

that the Acquire game functions are problem-specific functions needed for this problem.

In addition, the div function and functions for choosing a random set of opponents were

included in the kernel.

Fitness cases. We entertained the idea of several options as to how to evaluate the fitness

of individuals, including the number of wins in the 10 games played against opponents, the

total money earned in the series of 10 games, and, ultimately, the ratio of money earned

by the agent to the total amount of money earned in that game by both players. Fitness

of individuals in the population can be evaluated simply based on a binary “win-lose”

statement when the individual is pitted against an opponent in a game. One can also use

a “degree” of fitness, based on how much of a monetary advantage (or disadvantage) the

individual had over his opponent at the end of the game. In these situations, the opponents

could be random agents, or agents which are also using some sort of evolved strategy.

Ultimately, our problem specification did not use fitness cases in the strictest sense of

word and as intended in Koza’s kernel. The fitness cases for this domain, rather, consist of
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several games played within the Acquire system using the current individual as the evalu-

ation function for one of the agent players. We chose 10 games to be fairly representative

without causing the time needed to complete a run to explode. The agents played against

a random sample of other agents from that generation of the population, as a simple form

of coevolution using competitive fitness. The fitness of an individual was defined to be

the average over 10 games of the ratio of money earned in each game to the total money

earned in that game by both players. This ratio penalized players for losing disgracefully,

and rewarded players who won by a large margin more than those that won by a very small

margin.

Result from evolved program. The wrapper function which obtains the result from the

evolved program (the evaluation function) plays a game of Acquire and extracts the final

standings. The ratio of earnings in that game is calculated.

Test result against fitness cases and return a score. Here, our problem is also different.

When all 10 games are played, the average ratio is determined and adapted as the stan-

dardized fitness. The standardized fitness is defined such that lower numbers mean higher

fitness.

Problem-specific parameters. As has been noted in other literature on genetic program-

ming and evolutionary computation, parameter-setting is often a “black art”, with no real

justifiable reason to choose certain parameters over others, other than they yield better re-

sults after empirical testing [11].

In our case, we chose 10 fitness cases because playing only one game would certainly

be too random; the agent could have had a particularly lucky game and not won based

on its strategy at all, or vice versa for its opponent. We did not want a currently high-

ranked individual to be unseated by a lucky novice challenger. This is actually referred to

by Pollack and Blair as the “Buster Douglas effect” [31]. However, any number of games
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over 15 would take too much computer brawn than was available to us to evaluate in any

reasonable amount of time (we were attempting runs in the space of hours or days, rather

than weeks).

The maximum depth to search and the maximum depth for individuals was set at five

to avoid highly bloated individuals which would slow down evaluation. Crossover ratios

and mutation indices were kept as the defaults which Koza himself used in his other sam-

ple problems [23]: crossover at any point was kept at 20%, and at function points was

kept at 70%, to bias crossovers to occur at function points. The mutation rate during the

reproduction operator was kept at 90%.

The termination criterion. Typically, a genetic programming run is allowed to terminate

when an ideal individual has been found (i.e., one that satisfies all the fitness cases). When

evolving a game strategy, however, there is no ideal example, and any number of individ-

uals could perform well. Coevolution is meant to drive the evolution forward, so the best

choice is to push through a given number of generations. Therefore, our only termination

criterion was the completion of the number of generations which we forced our GP system

to execute.

See Table 3.1 for a summary of the problem outline, including parameter values.

As mentioned in Section 1.2, it is important to realize that the evolution of strategies

against other agents which are not themselves optimal will not necessarily lead to an op-

timal solution. The functions will only evolve far enough toward optimality to beat the

provided opponents, be they random or hard-coded. Hard-coded opponents are particularly

ill-suited for use in GP because the population will simply evolve to exploit weaknesses in

the hard-coded strategy, and would therefore be brittle when placed against other strategies

they had not faced before [27, 31]. On the other hand, coevolution is designed to force

the population toward optimality without allowing it to fall into local minima, by pitting

the evolving strategies against other individuals in the same population (or in the other
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Table 3.1: The Acquire GP Problem Specification
Objective: To find a board evaluation function for playing the game

of Acquire.
Terminal Set: A comprehensive-as-possible list of board feature

extraction functions, the digits from 0..9, and a random
floating-point constant.

Function Set: The four simple arithmetic functions, and three conditional
operators based on desirable board features, all taking
2 arguments.

Fitness Cases: n/a
Raw Fitness: The average ratio of money won in the 10 games played where

each ratio is the proportion of the total money earned in that game
which the given individual is responsible for.

Standardized Fitness: We subtract the raw fitness from 1.0 to force smaller
values to imply higher fitness.

Hits: n/a
Wrapper: The wrapper extract the amount of money won by that agent

compared to its opponent in a particular game of Acquire
from the final standings.

Parameters: Population size = 1000, Number of Generations = 50.
Success Predicate: No success predicate is used; the GP run proceeds until all

generations have been executed.
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population, in the case of two simultaneously evolving populations). We did not use two

populations, as is done in much of the literature on competitive coevolution [23, 36, 33], be-

cause in those cases, the two opponents are asymmetric. For instance, in the predator-prey

problem, an opponent is evolved to be either the predator or the prey. In games such as Tic-

Tac-Toe or Nim (pick-up sticks), the player to move first in a game has an advantage over

the second player, and the overall strategies therefore differ slightly [35]. This is largely

true because the games are so simple and the branching factor is small, lending the game

to global analysis. In games such as Acquire, Backgammon, and Checkers [6], however,

the opponents are effectively symmetric. In any given state, it is true that one player might

have an advantage over the other based on who gets to move next, and a localized strategy

might be more effective for each turn. As this advantage can pass from one to the other

as turns progress, any general, global strategies developed (as we are attempting) must not

overfit to these potentially transient advantages. Therefore, we use one population whose

fitness is judged on the basis of a given number of games played against randomly-selected

opponents from the population, similar to the approach taken by [6].

Initially, we actually perceived our domain as providing two separate GP problems to

solve. During an agent’s turn, as mentioned in Section 3.1.1, he faces two choices. The first

is which tile to place; the second is which chain to invest in. These strategies are sufficiently

separated (we believed) to support their separate evolution. It was unclear in our early

stages of familiarity with GP techniques, how to evolve two separate trees using Koza’s GP

code without altering it significantly, as Luke did for his kick and dash trees in evolving

soccer-playing softbots for the Robocup simulation league [26]. In hindsight, this may not

have been as difficult as was believed when the project was begun. In fact, there are strong

reasons justifying the evolution of one player strategy with both functions incorporated,

centering around the “credit assignment problem”, mentioned in much of the literature

where coordinating programs must be evolved [27, 18]. The credit assignment problem

refers to the difficulty of assigning fitness to the individuals in a team based on a win or
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loss. How much of the win can be credited to any one individual? How much of the loss

can be claimed to be a certain individual’s “fault”? While computationally more complex,

and requiring some amount of structural constraints (see Section 5.3), evolving teams as

a unit sidesteps this credit assignment problem. In effect, the tile-placement function and

the stock-purchase function pair must coordinate with each other to maximize the winning

potential of the agent using them. To avoid the credit assignment problem, one would

evolve the two functions as a unit, to avoid the later problem of figuring out how to combine

them.

Nevertheless, before the credit assignment problem emerged as an issue, it was decided

to evolve populations of place-tile evaluation functions separately from populations of buy-

stock evaluation functions. We provided them both identical terminal sets and function sets,

in an attempt to decrease the effect of our human prejudices as to which factors may be im-

portant in either decision. Of course, we recognized that, to have a real strategizing Acquire

agent, it must include functions for both of decisions to be made in a turn. Therefore, at

the conclusion of our GP runs to evolve these decision functions separately, we chose a run

for each population at random and also ran an all-pairs competition to see which pair of

buy-stock and place-tile functions worked the best together. See Section 4.3 for details.

We used tournament selection because, as is justified by [21], it reduces the number of

evaluations needed, and because there is no exhaustive set of test cases for Acquire, making

fitness-proportionate selection (selection based on the proportion of fitness cases matched)

meaningless. Tournament selection was introduced by Angeline and Pollack [3], in order

to reduce the number of competitions needed and to force the population to avoid local

minima traps.
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3.2.1 Adaptations to the Acquire Domain

Certain adaptations to the original game of Acquire were incorporated into our system,

for various reasons, and are discussed below. First, the number of hotel chains in the

game is actually seven, but we decreased this number to three, to decrease the number of

functions our GP would have to manipulate during evolution. With seven distinct hotels,

our terminal set size was greater than 50. We determined that this would unnecessarily tax

our system. In addition, because strategies should not be dependent on certain chain names,

but rather should be based on their current positions on the board (i.e., size and neighbors),

we simplified the problem to largest chain, medium chain, and smallest-chain. Evaluation

functions based on these parameters rather than hard-coded for chain names are inherently

more robust in evolution. It is easy to see that in a certain game where CHAIN-1 may be

the largest and the agent’s evaluation function has a reference to its size, the agent may do

well and advance to the next generation, but then suddenly do much more poorly in the

next game because the circumstances are very different.

Second, we reduced the game to a one-on-one competition rather than allowing multi-

ple opponents to play against the evolving agents. This was done to reduce the time and

computational complexity of playing through one game. Since the fitness evaluation of

each agent requires 10 games to be played, it was essential that each game not be a bot-

tleneck for system performance. Reducing the number of players in the game changes the

dynamics of a human-played game, as well as affecting the total amount of money possible

to win (but not decreasing the validity of measuring a ratio). The multi-player version of

this game is a much more complex, chaotic problem that could be interesting to study in

future work in this area.

Another simplification involved the other, more minor in-game choices a player may

sometimes have to make. When a chain is created, the player is allowed to choose which

one it will be; when two chains of equal size merge, the player is allowed to choose which

one will triumph; when certain end-game conditions are met, the player is allowed to
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choose to end the game or not. Because of our desire to focus on the core of the strat-

egy of this complex domain, these minor decisions are relatively unimportant, and in the

current system, the engine performs a random choice of the available options. We did not

want to have to evolve behaviors for dealing with these other three minor decisions as well,

since only the place-tile and buy-stock decisions are the driving force behind the game

progress. While it can be argued that the three minor choices above have the potential to

turn the tide of a game, the extent to which this is possible was deemed inconsequential to

the overall strategy.

3.2.2 Adaptations to Koza’s Genetic Programming Kernel

To support the execution of our evolutionary experiments, we also made a few changes

to Koza’s GP kernel. In our preliminary experiments, we experienced a lack of progress

due to certain issues. One problem was that potentially good individuals were often lost

as time went by because the best individuals were not guaranteed to survive to the next

generation. This is acceptable for fixed-fitness-based domains such as symbolic regression,

or deterministic games, like the examples in Koza’s book [23], because, when an individ-

ual is found which satisfies all fitness cases, it can be recognized as the optimum, or a

functional equivalent. However, for Acquire, it can be argued, as for many other complex

strategy games, that there exists no optimum strategy. Therefore, we want to encourage the

promotion of evaluation functions which do very well against others, in case that a particu-

larly strong strategy is discovered in a very early generation. To this end, we implemented

a version of forced elitism within Koza’s kernel, which did not otherwise support it. We

saved the best 2% individuals from each generation and added them to the next generation’s

population, unchanged.

The second change we made to Koza’s kernel was to add a simplified version of coevo-

lution, which was also not supported by his code. In this version, to determine an individ-

ual’s fitness, we chose 10 individuals at random (without replacement) from the population
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and played the games against these agents. Since no optimal strategy was known, and since

hard-coding strategies only leads to the evolution of brittle, inflexible strategies capable of

exploiting the weaknesses in the provided opponents but not others [31, 27], coevolution

was the logical alternative. To reduce the number of evaluations we needed to perform,

both players receive credit for the game, even the individual not currently being evaluated

by the GP system. This meant that some players never had to enter an evaluation loop, as

they had already played 10 games against other players during their evaluation loops.
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Chapter 4: Experimental Results

4.1 Genetic Programming Runs

We ran several preliminary experiment sets, to try to determine what set of parameters gave

us the best up-slope in the early generations. After this, we performed the actual GP runs.

We ran 10 experiments for each decision population (the Place-Tile function and the Buy-

Stock function), and analyzed the means over these 10 runs. This redundancy was to allow

us to more effectively argue for any trend line that may have resulted, and to eliminate the

effect of noise and domain stochasticity on the results. Preliminary results indicated that

the two decision populations varied from each other; the shape and magnitude of the curves

differ enough to show the two populations have evolved separately. See Figures 4.1 and 4.2

for illustrations of the differences in individuals’ size between the two decision populations.

This shows that, although the two populations were provided with the same terminal and

nonterminal sets, they evolved very differently due to the nature of the problem to which

the individuals were applied.
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Figure 4.1: Average Size of Individuals in each Generation for Place-Tile Population, Mean
Over 10 Runs
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Figure 4.2: Average Size of Individuals in each Generation for Buy-Stock Population,
Mean Over 10 Runs



33

4.1.1 Place-Tile Decision Population Evolution

The first graph for the Place-Tile decision population is shown in Figure 4.3. It shows the

mean over 10 runs of the performance of the best individual from each generation (not

necessarily the same individual from one generation to the next) over time, as a function

of the fitness metric used to guide evolution: the ratio of money earned by the player in

his games compared to the total amount of money earned by both players in these games.

A higher number in this case reflects a more fit individual; for instance, a ratio of 0.75

represents an individual which is keeping a good majority of the profits available in a game

for himself.

We hope that, as time goes on, the strategies are able to achieve higher levels of income

in a game, as a result of more intelligent stock purchases and the effecting of timely merg-

ers. The data from any one run is quite noisy, which can be seen from the scatterplot shown

in Figure 4.5, probably due to the random nature of the Acquire game domain (random-

ness forces other areas of the search space to be explored, forcing strategies toward more

generality and penalizing those which are too specific). The cloud shown in the scatterplot

illustrates that there are no outlying runs obscuring trends in the data overall. Analysis of

the means plotted in Figure 4.3 is not much more promising; there is a very slight upward

trend as the generations progress, but even the means are still showing a lot of noise be-

tween generations. Note the small scale used on the y-axis in this graph; although the trend

is increasing, it is extremely gradual, implying that more generations may be needed.

Another metric of progress we considered was the average standardized fitness for the

population in each generation as reported by the GP system during the run. As above,

recall that raw fitness is the average ratio of earnings of an individual in a game to the

total earnings in that game by both players, and that the fitness is then standardized by

subtracting it from 1.0, meaning that lower numbers reflect more fit individuals. The graph

shown in Figure 4.7 displays the means over 10 runs of the average standardized fitness

over all individuals in a population for each generation. Again, the means graph still suffers
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from noise, and here the downward trend is not as steep (note that the scales are different

between the two figures).

These results are discouraging, because one would hope that any noise present at vary-

ing points throughout the runs would be counteracted via using the means analysis of sev-

eral runs. That the jagged lines still occur suggest that the populations are evolving in very

similar fashions throughout each run, across runs. Each run’s own data does not in fact

have the same shape, so the runs are not exact replicas of each other, but they do appear

to exhibit parallel behavior across runs in the same generations. Further analysis of these

results is left to Section 4.2.
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Figure 4.3: Performance of the Best Individual from Each Generation for Place-Tile Popu-
lation, Mean Over 10 Runs (Note: graph is analyzed in Section 4.1.1.)
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Figure 4.4: Performance of the Best Individual from each Generation for Buy-Stock deci-
sion, Mean Over 10 Runs (Note: graph is analyzed in Section 4.1.2.)
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Figure 4.5: Scatterplot of the Fitness Ratio of the Best Individual over Time for Each Run
for Place-Tile Population (Note: graph is analyzed in Section 4.1.1.)
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Figure 4.6: Scatterplot of the Fitness Ratio of the Best Individual over Time for Each Run
for Buy-Stock Population (Note: graph is analyzed in Section 4.1.2.)
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Figure 4.7: Average Standardized Fitness of each Generation for Place-Tile Population,
Mean Over 10 Runs (Note: graph is analyzed in Section 4.1.1.)
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Figure 4.8: Average Standardized Fitness of each Generation for Buy-Stock Population,
Mean Over 10 Runs (Note: graph is analyzed in Section 4.1.2.)
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4.1.2 Buy-Stock Decision Population Evolution

The performance of the best individual in each generation for the Buy-Stock decision pop-

ulation over time is shown in Figure 4.4. This graph is even less encouraging than that for

the Place-Tile population because, in addition to the noise still interfering, the trend line

extrapolated from this data does not even have a positive slope, but is rather much more

flat. Figure 4.6 again shows the scatterplot of each individual run’s data. The cloud again

is stable, showing that no one run acts as an outlier confusing the means, but rather each

run behaves in approximately the same manner as the others. The graph of the average

standardized fitness of the population over time is shown in Figure 4.7. The graph’s noise

makes it difficult to see a trend, but it appears to be also averaging out to a level slope.

Again, note the small scale of the y-axes in these figures.

While discouraging from a superficial (i.e., shape of the graph only) standpoint, the

results from this and the Place-Tile population do not necessarily show absolutely no im-

provement of the populations, however, as discussed in Section 2.2. We deal with the issues

of coevolution and how it can affect the fitness landscape with further experiments outlined

in Section 4.2.

4.1.3 Case Studies of Individuals

In a randomly-chosen Place-Tile evolution run, the best-of-run individual program was

found on generation 37. It was:

(- (STOCK-HELD-BY-PLAYER-IN-CHAIN-3)

(+ (+ (IF-I-AM-MAJ-STOCKHOLDER-IN-CHAIN-2 9

(MERGER-VALUE-OF-CHAIN-3))

(- (PRICE-OF-CHAIN-1) (STOCKS-LEFT-OF-CHAIN-1)))

(IF-CHAIN-3-IS-OF-MAXIMUM-SIZE

(- (PRICE-OF-CHAIN-1) (STOCKS-LEFT-OF-CHAIN-1))

(STOCKS-LEFT-OF-CHAIN-1))))
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This parse tree can be rewritten in the following English words: “If I am the current

majority stockholder in the middle chain and if the smallest chain is large enough to satisfy

the end-game condition, the value of the board state is given by the difference between

the quantity of stock I hold in the smallest chain and twice the difference between the

price of the largest chain and the number of stocks left in the largest chain to buy, plus a

constant (9). If the smallest chain is not large enough, the value is the difference between

the quantity of stock I hold in the smallest chain and the sum of the price of the largest

chain plus a constant (9). If I am not the majority stockholder in the middle chain, the

constant in the above conditions is replaced by the merger value of the smallest chain (the

majority stockholder’s bonus, guaranteed to be more than 9).”

This can be further analyzed as follows. If the smallest chain is large enough to end the

game, that means the other chains must be also at least as large. Given that the smallest

chain must be of size 41 to meet the end-game condition, the other two chains must also be

at least of size 41, which makes 123 tiles belonging to the three chains. However, there are

only 108 squares on an Acquire board. Therefore this piece of the strategy will never apply.

Moving to the case where the smallest chain is not yet large enough to end the game, the

value of the board is derived by subtracting the price of the largest chain plus the constant

9 from the amount of stock the player currently holds in the smallest chain. If the player

is not currently the majority stockholder in the middle chain, the value is determined by

subtracting the price of the largest chain plus the merger value of the smallest chain from

the amount of stock the player currently holds in the smallest chain. These seems to create

a drive toward merging the smallest and largest chains if the player does not stand to gain

a great deal of money by merging the largest and middle chains (i.e., he is not the majority

stockholder in the middle chain). When a merger occurs between the smallest and largest

chains, the player will be forced to trade in his stock in the smallest chain for stock in the

largest chain. Therefore, the amount of money he stands to gain from this transaction is

directly given by the amount of stock he owns in the smallest chain and the current price of
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the largest chain, which would be the value of the stock he receives during his trade-in.

In a randomly chosen Buy-Stock evolution run, the best-of-run individual program was

found on generation 44. It was:

(IF-CHAIN-2-IS-SAFE-FROM-MERGING

(+ 7

(IF-CHAIN-3-IS-SAFE-FROM-MERGING 2

(STOCK-HELD-BY-PLAYER-IN-CHAIN-1)))

(IF-CHAIN-3-IS-OF-MAXIMUM-SIZE 8

(IF-CHAIN-3-IS-SAFE-FROM-MERGING (PERIMETER-OF-CHAIN-2)

(DIST-TO-NEAREST-NEIGHBOR-OF-CHAIN-3))))

This parse tree can be rewritten in the following English words: “The value of any

given board state resulting from my available stock purchases is dependent upon whether

the middle chain is safe from merging. If it is, the value is 9 if the smallest chain is also

safe from merging, or 7 plus the amount of stock I hold in the largest chain. If it is not,

the value is 8 if the smallest chain is large enough to cause the end of game conditions to

be met, otherwise it is the growth potential of the middle chain if the smallest chain is safe

from merging, and the unlikelihood of an immediate merger of the smallest chain if it is

not safe from merging.”

This individual can be further analyzed as follows. The purpose of this decision is to

determine which chain to purchase stock in during this turn. If the middle chain is safe from

merging, and the smallest chain is also safe from merging, this entails that the largest chain

is also safe from merging (of size 11 or greater). In this case, the end-game conditions

have been met and the game could end at any time; a player at this point only stands to

gain money based on the stocks left in his hand which he will sell at the end of the game.

The case where the smallest chain is not yet safe from merging means that it could still be

merged, and this strategy seems to encode a preference for increasing the amount of stock

held in the largest chain, which will pay off if the smaller chain grows or is swallowed up
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and the game ends, forcing the players to sell their stock. The largest chain’s stock price

will be very high if it is that large. The case where the middle chain is not yet safe from

merging and the smallest chain does satisfy the end-game condition is not possible, and

therefore this branch of the strategy is unused.

However, if the middle chain is not yet safe from merging, the value of the board de-

pends on the growth potential of the middle chain if the smallest chain is also safe from

merging (and therefore, the end of the game could occur at any time). This implies that

the strategy will prefer investing in the middle chain in this case, which may be more af-

fordable than investing in the largest chain, and may be made larger in future turns (growth

potential). Finally, if the middle chain is not yet safe from merging, and the smallest chain

is not, the smallest chain could still merge with the larger or middle chain, and therefore

the immediacy of this potential merger determines the value of the board. This seems to

push for investing in the smallest chain until it merges, in hopes of becoming the majority

stockholder and receiving that payoff.

These both may seem complex, but that is representative of the domain of Acquire.

These strategies make sense in the context of the game. Other strategies which performed

well also had similar structures and complexity. The functions do an adequate job of identi-

fying the most profitable situations and rating them highly, which is, ultimately, the purpose

of the board evaluation function in the first place. While these strategies may not capture

all of the aspects of an Acquire game, the fact that they have been able to identify the situa-

tions they have is promising. These results in themselves justify the purpose of this thesis,

which was to determine if GP could yield competent Acquire players which learn how to

exploit the rules of the game to make money for themselves.

4.2 Measuring Coevolutionary Adaptive Progress

Section 2.2 mentions the so-called “Red Queen effect” which alters coevolutionary inter-

actions: the populations, by nature of their interaction, alter the fitness landscape. Various
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measurement and visualization techniques have been developed to account for this effect

when reporting on genetic programming runs, also discussed in Section 2.2, and we have

adopted a simplified version of one of them here, to attempt to ascertain if any remarkable

progress is occurring during our evolutionary runs at all. [9] and [36] created pictographs

showing the outcomes of round-robin tournaments of the best from each generation against

samples from every other generation; the expectation is that, the more “ancient” an oppo-

nent, the better current individuals should do when pitted against them. To ensure mono-

tonicity of the results, it is essential to test later generation players against earlier ones. [5]

used random samplings of players from each generation against benchmark players from

varying epochs of generations, to test if the population was truly evolving continuously

toward an optimum or simply getting stuck in local optima. The approach we took was

similar but less complex: we played the best individual from the final generation against

the best individual (according to standardized fitness) from each previous generation, where

each pair was played against each other 10 times.

Since we had only one set of data points, we simply plotted the matches as a line graph

(of course, we used the means over all 10 runs). See Figure 4.9 and 4.10 for the graphs for

each decision population. In the Place-Tile population’s graph, there is still the noise issue,

even after sampling over the mean. Yet there is a clear downward trend line, in spite of this

noise. This downward trend means that, as the generations progress back from generation

49 to generation 0, the final generation’s best player is capable of beating them more often,

implying that there is in fact progress of the population as a whole. Yet in the Buy-Stock

population graph, the trend is flat and only starts to be negative toward the end of the runs,

as is shown by the moving average line. It is unclear whether these results are definitive

enough to recommend this technique as it is as a reliable method of evolving these sorts

of board evaluation functions. We would like to see a much more obvious and consistent

trend throughout the generations. Areas for exploration into possible improvements on this

technique are discussed in Section 5.
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Figure 4.9: Results from the “Tournament of Bests”, as represented by the Number of
Wins Recorded for Place-Tile Population, Mean Over 10 Runs (Note: graph is analyzed in
Section 4.2.)

4.3 Obtaining a Combined Strategy

Because we did not evolve the two functions simultaneously (see Section 5.3 for a discus-

sion of this), and because a competent Acquire player must concentrate on both aspects

of gameplay in order to perform well, the final experiment we conducted was a simple

all-pairs competition, using the reports on the GP runs of the best individual from each

generation. We chose the same run we had chosen at random for each population in Sec-

tion 4.1.3, to see how a sample of the best functions from each population would rank when

paired with each other. The competition matched every pair of the best individuals from

each generation (the best individuals from certain generations may be the same or function-

ally equivalent) and played 10 games against a random sampling of other pairs. The pair

with the best score (as represented by the number of wins) is considered to be the strongest
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Figure 4.10: Results from the “Tournament of Bests”, as represented by the Number of
Wins Recorded for Buy-Stock Population, Mean Over 10 Runs (Note: graph is analyzed
in Section 4.2.)

Acquire player which we have been able to develop through the technique described in this

thesis.

There were four pairs that won all 10 games played against their opponents; they were

from generations 17 and 45, 19 and 0, 38 and 47, and 46 and 32, where the first number is

the generation of the Place-Tile individual chosen and the second number is the generation

of the Buy-Stock individual chosen. For the programs of these pairs, see Appendix B. We

matched these four pairs against four intermediate human Acquire players, with compara-

bly the same amount of experience with the game, and had them play five games. While it

is not possible to draw firm conclusions about the results of the evolution from this alone,

it is interesting to note that the agents did in fact win about half the games they played

against the humans. The first player lost once, the second and third players lost twice, and

the fourth player actually lost four times, against the agent players. This shows a great
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deal of promise for the evolution of competent Acquire players via this technique. While

the players evolved may not have approached expert level (shown by their apparent lack of

overall population progress), the building blocks to produce good novice players appear to

have been available through this technique.

Ironically, the best-of-run individuals (from generations 37 for Place-Tile and 44 for

Buy-Stock) do not appear in these four top-ranked pairs. The first occurrence of the Place-

Tile individual from generation 37 in the pair rankings is tied with 181 other pairs with

8 wins; the first occurrence of the Buy-Stock individual from generation 44 in the pair

rankings is in another pair in that bracket with 8 wins. This implies that evolving them

separately leads to mediocre results, and that there is a greater degree of intertwining of

the individuals than we had initially foreseen. This point is a strong recommending fac-

tor for the evolution of Place-Tile/Buy-Stock pairs in the same population, rather than as

individuals. See Section 5.3 for more discussion on this topic.
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Chapter 5: Conclusions

5.1 Contributions

This work has potentially served to further the evidence that genetic programming is a vi-

able method to use in the development of strategies or board evaluation functions for com-

plex domains such as Acquire, granted some much-needed investigations into the technique

used and the application of various related methods described in the literature on the sub-

ject. We have managed to evolve novice Acquire players using GP techniques; the players

may never have passed a certain level of expertise, but they could hold their own in test

games against humans. We have shown that this technique has promise for this domain,

and have opened the doors for further future work in this area.

5.2 Limitations

Time was a serious limiting factor in the breadth of the experiments we were able to con-

duct. There are many fascinating issues in GP which would have been interesting to ex-

plore. The inability for us to be able to make claims about the objective efficacy of the

strategies developed by our GP runs is a limitation which we expected, as our goal in per-

forming this work was not to create a world-class Acquire player, but simply to see how

possible it was to evolve players for this complex domain in the first place. One observation

which we can make, however, is that, through a series of five games with a group of novice

players and one expert (the author), monetary gains of the players did in fact hover around

the amounts won by the evolved strategies in their own games, when the human players

played with the same set of restrictions on the rules of the game as the agents did.

There are many areas of this work which could be improved, and admittedly, we did not

have fully rationalized reasons for the various GP parameter values we used, other than that

they were Koza’s defaults. However, our domain is significantly different from symbolic
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regression problems, and therefore these parameters may very well be poor choices. Much

literature refers to the problem of parameter-setting as a “black art” [11]. [14, 11] both

discuss the problems inherent in how to choose technique-specific and problem-specific

parameters, such as crossover and mutation ratios, population size, et cetera. It is pointed

out that they are highly interdependent, and that changing one may have effects on the

GP run that are unexpected, due to this interdependence. Parameter control, or tuning of

the parameters during the actual evolutionary run, may provide some better way to guess-

and-check parameter settings. However, this is very computationally expensive in itself,

and may not yield results [11]. The parameter setting conundrum requires many more

empirical results than we quote here to set them in a definitive fashion.

Another limitation was the simplistic nature of the nonterminal set used. For complex

strategies, more robust decision-making is required. There were several logical and deci-

sion operators which we would have liked to include, such as and, or, not and if. These

are known to be useful in evolving decision-making strategies, and there is support in the

literature for their inclusion when evolving strategies or board evaluation functions [16, 15].

Reasons why we did not choose to include them in our approach are discussed in 5.3. Fu-

ture approaches to this problem, and ones like it, will benefit from an exploration of a more

complex function set.
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5.3 Related and Future Work

5.3.1 Richer Terminal and Nonterminal Sets (Strongly-Typed Genetic Programming)

As mentioned above, the functions chosen for the nonterminal set were more simple than

this problem may potentially require. However, Koza’s GP kernel which we used has the

unfortunate requirement of “closure”: all functions must be able to take as their arguments

any terminal or return type from other functions which may result, and the root node must

return the expected type for the program [23]. While this is feasible for symbolic regression

problems, decision problems are too severely limited by this constraint. It would require

rewriting of the decision operators, in our case to accept numeric arguments and return

numeric arguments, which is not feasible and sidesteps their advantages as decision op-

erators in the first place. In Koza’s examples, the non-hamstrung squad car problem (a

variation of the predator-prey game) for which he evolves strategies in Appendix B of his

1992 book [23] uses several conditional functions which have been tailored to his domain

in order to satisfy this constraint (e.g., ifX which takes three arguments, determining what

to do when x is less than 0, equal to 0 or greater than 0). Given that our function set is

already so large as a result of the complexity of the domain and the amount of informa-

tion available to an agent during gameplay, the number of conditional operators would be

unacceptably large.

This problem has been discussed in the literature, however, and as a result of this limita-

tion of Koza’s technique for more complex domains, Montana developed “strongly-typed

genetic programming” (STGP) [30], which operates as an extension to the original GP

paradigm, but allows the return types and argument types of all functions and terminals to

be specified along with each terminal and nonterminal. This not only allows elements such

as logic and decision operators to be included without being specifically tailored to the do-

main or the problem, but it can cut down on the size of the terminal and nonterminal set as

well, through the use of generic functions. While Montana implemented his extensions in

C++, Koza’s LISP kernel could be extended itself to provide STGP via the CommonLISP



49

Object System (CLOS). This would relieve some of the computational stress of generating

the population and the possible dilution of the GP technique due to the very large func-

tion sets. For example, the function set may be so large that the GP system cannot fully

explore the space of possible individuals for a given population size. Our population size

of 1000 hopefully relieved that issue to a degree by allowing many more individuals to

be generated. With strongly-typed genetic programming, on the other hand, the functions

which must now be specific to each hotel chain in the game could be rewritten as generic

functions and the STGP system could evolve the correct arguments. This would allow all

seven chains to be used instead of the three-chain simplification we opted to use in these

experiments, and which undoubtedly reduced the amount of money available to be won by

the evolving agents.

5.3.2 Evolution of a Unified Strategy for Acquire via Structurally Constrained GP,
Dynamic GP and the Evolution of Lambda Functions

As mentioned in Section 3.2, we ran an all-pairs competition to see which pair of buy-

stock and place-tile functions worked the best together. This was purely for curiosity’s

sake, and the semi-round-robin tournament as played does not provide an adequate means

of determining the best pair, compared to the possibility of evolving the two functions

simultaneously. The credit assignment problem prevents the two strategies from being

evolved as individuals in separate populations from being a workable solution. The ideal

way to pursue this problem in future would be to adopt a form of structurally-constrained

GP, which forces the individuals being evolved to have two parts, the order of which is

predetermined for ease-of-use within the Acquire system. Then, the individuals are marked

as fit or unfit relative to the population as a whole, rather than as a result of either half of

the strategy. In this way, the credit assignment problem is avoided, but a fully-integrated

agent strategy can be evolved.

Although our goal in providing the large terminal and nonterminal sets that we did was

to avoid biasing our results with preconceived notions from the authors about what would
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make a good strategy, it is of course possible that we still may have inadvertently done

so, especially when one considers the choice of conditional operators we made. With this

potential limitation in mind, several sources in the literature discuss allowing the GP system

to evolve lambda functions [34] or higher-level functions and their sub-behaviors [2, 32], in

addition to being given certain discrete terminals and nonterminals. Since it seems likely

that the function set we have provided for the Acquire domain is in fact too limited to

allow innovative and robust strategies to develop, incorporating this idea of dynamic GP

may ameliorate the results by allowing the GP system to explore areas of the search space

that the authors may not have recognized as useful or necessary at the time of problem

formulation.

A tangent to this idea is the fact that GP operators tend to promote convergence, caus-

ing all individuals to become more similar over time [22]. GP systems tend to require

large populations of individuals to ensure a sufficiently wide sample of the possible search

space, so that encountering appropriately fit individuals is more likely. Therefore, our prob-

lem specification used a population size of 1000. [22] uses an operator called “splitting”

which those authors claim actually discourages convergence; such an approach may help

in the case where Acquire strategies which are evolved are not allowed to become complex

enough because not enough of the search space is explored.
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5.3.3 More Comprehensive Measures of Competitive Coevolution

Enforcing the criteria that new individuals must always be able to defeat previous indi-

viduals will ensure that the population is always progressing, and not stagnating in a local

minimum [36]. Building beyond our very simplistic “tournament of bests”, a “hall of fame”

of sorts can be used to test current individuals against a sample of the past individuals which

were best in their respective generations; a second possibility is to force the fitness of an

individual to be based on its ability to beat the best individual from the previous genera-

tion [39].

Perhaps all that is needed is the use of better visualization techniques to monitor how

the fitness landscape is changing over time and, therefore, to judge the degree of progress

within the population. Several methods have been used in the literature [9, 35, 36, 24]:

tournaments of the population champions against all previous champions (“ancestral oppo-

nent contests”) and distance metrics using similarity of the parse trees developed (“genetic

distance measures”). Although we did use a simplified version of the ancestral opponent

contests in our approach (Section 4.2), the more complete ones in the literature provide a

better global perspective on the population over time. When applied to results from Acquire

GP runs, perhaps more definitive patterns of progress would emerge.

5.3.4 Annealing Schedule of Fitness Metrics as Population Evolves

As was discussed in Section 4.2, a problem with determining progress in competitive co-

evolution is that, as the population progresses through the generations, the coevolution

alters the fitness landscape as the population as a whole improves. In later generations,

when many of the individuals are similar in overall fitness, but still compete against each

other, it will take more games to determine which of two very close competitors is actually

better. Some studies have therefore used an “annealing schedule” of fitness functions [31].

In this model, the number of games played is increased as varying epochs of generations

are reached (i.e., 10 games from 0-100, 15 games from 100-300, 20 games from 300 on).
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Unfortunately, this annealing schedule will be highly domain- and problem-dependent, and

literature which discusses it also states that the schedule was the result of preliminary em-

pirical results [31]. To apply this to Acquire would require further investigation into the

progress of our GP runs.

5.3.5 Use of Internal State to Promote Learning Through Experience

Some literature also makes reference to the possible usefulness of a notion of internal state

throughout the GP run, to allow the individuals in the population to learn via experience

what strategies may have more promise [25, 28]. However, it seems that this is most useful

in static environments where the evolving strategies can operate on the same configura-

tion of the world in each iteration, such as in the wumpus world [42, 41] or in the Map-

maker/Map-user domain of [1]. Agents operating in the Acquire domain may be able to

profit from these methods, even though the world is highly variable from game to game,

because the rules of the game and dynamics of the domain remain the same. A strategy

which does well in one game may do poorly in another and be mutated in some fashion,

causing it to no longer perform well in the game scenarios it initially encountered, because

they are no longer accessible. Guiding the evolution process aided by learning through

experience with past game situations may yield more robust individuals in the long run,

capable of handling many strategic nuances.

5.3.6 Changing the Representation to Neural Networks

Much work has been done where strategies for games or board evaluation functions are

evolved using neural networks as the representation. The representation of the problem is a

limiting factor on how well a technique will do in solving a particular problem; linear func-

tions may not be complex enough to yield appropriately complex strategies for domains

like Acquire. Neural networks, as nonlinear functions, are much more flexible and capable

of abstracting the behavior of a strategy [7]. Neural networks have already been applied
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to the games of Checkers [38, 8, 6], Backgammon [43, 31], Go [24], Tic-Tac-Toe [7], and

others. This avenue may hold promise for the evolution of more adaptive, more robust, and

stronger Acquire strategies or board evaluation functions. As [7] states, “it is a fundamental

problem to treat non-linear problems as if they were linear” (p. 3). Perhaps that was our

mistake here.

5.4 Summary

This thesis presented work which applied genetic programming techniques to the evolution

of board evaluation functions for a complex strategy game called Acquire. We demon-

strated that it is in fact possible to develop strategies for the Acquire domain using these

techniques, but that these techniques have a long way to go before they can produce players

on a high level of competence. Evolution was not encouraged enough during our exper-

iments, and for this reason, further exploration into modified techniques is needed. Our

experiments have laid the groundwork for future studies in these areas, by expanding the

current experiments to include more runs, a richer function set, and ultimately applying

these techniques to more complex domains than Tic-Tac-Toe and Othello. The problem

is by no means solved—there are many avenues which were only touched upon during

our work. It is our hope that these efforts open up an interest in non-minimax games like

Acquire, and lead to the possibility of further explorations of these topics.
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Appendix A Terminals and Nonterminals Used in the Acquire Problem

Table A1: Some Terminals Used in the Acquire GP Problem Formulation
Terminal Description
(cash-held-by-player) this function returns the amount of cash held

by the current player as a result of the move
being considered (i.e., if the player buys
stock, how much money will he have left)

(dist-to-nearest-neighbor-of-chain-1)

(dist-to-nearest-neighbor-of-chain-2)

(dist-to-nearest-neighbor-of-chain-3)

these functions return the Manhattan distance
to the nearest neighboring chain to the respec-
tive chain, as a result of the move being con-
sidered

(how-many-opponents) this function returns how many opponents the
current player is facing

(merger-value-of-chain-1)

(merger-value-of-chain-2)

(merger-value-of-chain-3)

these functions return the majority stock-
holder’s bonus for the respective chain as a
result of the move being considered

(payoff-value-to-player-of-chain-1)

(payoff-value-to-player-of-chain-2)

(payoff-value-to-player-of-chain-3)

these functions return the payoff to the cur-
rent player if a merger were to take place (i.e.,
if he receives a bonus, how much, plus how
much money he would receive for selling his
stock) of the respective chain, as a result of
the move being considered

(perimeter-of-chain-1)

(perimeter-of-chain-2)

(perimeter-of-chain-3)

these functions return the perimeter measure-
ment of the respective chain on the board (i.e.,
all adjacent tiles which, if played, would add
to the size of the chain), as a result of the
move being considered

(price-of-chain-1)

(price-of-chain-2)

(price-of-chain-3)

these functions return the price of stock in the
respective chain as a result of the move being
considered
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Table A2: Some Terminals Used in the Acquire GP Problem Formulation
Terminal Description
(size-of-chain-1)

(size-of-chain-2)

(size-of-chain-3)

these functions return the size of the respec-
tive chain as a consequence of the move being
considered

(stock-held-by-player-in-chain-1)

(stock-held-by-player-in-chain-2)

(stock-held-by-player-in-chain-3)

these functions return how much stock will
be held by the current player in the respec-
tive chain as a consequence of the move being
considered

(stocks-left-of-chain-1)

(stocks-left-of-chain-2)

(stocks-left-of-chain-3)

these functions return the number of stocks
available to purchase in the respective chain
as a result of the move being considered

0..9 the integer digits from 0 to 9
:floating-point-random-constant a ephemeral random floating point constant,

as per [23]

Table A3: Nonterminals Used in the Acquire GP Problem Formulation
Nonterminal Description
+ addition of 2 arguments
- subtraction of 2 arguments
* multiplication of 2 arguments
div protected division function (returns 0 if di-

vide by zero is attempted)
(if-i-am-maj-stockholder-in-chain-1)

(if-i-am-maj-stockholder-in-chain-2)

(if-i-am-maj-stockholder-in-chain-3)

if the player is the majority stockholder in the
respective chain, executes the first argument,
otherwise executes the second

(if-chain-1-is-of-maximum-size)

(if-chain-2-is-of-maximum-size)

(if-chain-3-is-of-maximum-size)

if the respective chain is big enough to meet
the endgame condition, executes the first ar-
gument, otherwise executes the second

(if-chain-1-is-safe-from-merging)

(if-chain-2-is-safe-from-merging)

(if-chain-3-is-safe-from-merging)

if the respective chain is too big to be taken
over by another chain, executes the first argu-
ment, otherwise executes the second
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Appendix B Parse Trees of the Top Four Ranked Pairs in the All-Pairs Tournament

� Pair 1—Place-Tile from generation 17:

(- (IF-I-AM-MAJ-STOCKHOLDER-IN-CHAIN-2

(* (DIV (PERIMETER-OF-CHAIN-2)

(STOCK-HELD-BY-PLAYER-IN-CHAIN-2))

(SIZE-OF-CHAIN-2))

(IF-CHAIN-1-IS-OF-MAXIMUM-SIZE

(IF-CHAIN-3-IS-OF-MAXIMUM-SIZE

(SIZE-OF-CHAIN-3) (STOCK-HELD-BY-PLAYER-IN-CHAIN-1))

(IF-I-AM-MAJ-STOCKHOLDER-IN-CHAIN-3

(PAYOFF-VALUE-TO-PLAYER-OF-CHAIN-2) 2)))

(+ (+ (IF-I-AM-MAJ-STOCKHOLDER-IN-CHAIN-2 9

(MERGER-VALUE-OF-CHAIN-3))

(- (PRICE-OF-CHAIN-1) (STOCKS-LEFT-OF-CHAIN-1)))

(IF-CHAIN-3-IS-SAFE-FROM-MERGING

(STOCK-HELD-BY-PLAYER-IN-CHAIN-3)

(IF-CHAIN-3-IS-OF-MAXIMUM-SIZE

(SIZE-OF-CHAIN-3) (MERGER-VALUE-OF-CHAIN-1)))))
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—Buy-Stock from generation 45:

(IF-CHAIN-3-IS-SAFE-FROM-MERGING

(IF-CHAIN-2-IS-SAFE-FROM-MERGING

(IF-CHAIN-1-IS-SAFE-FROM-MERGING 1

(IF-CHAIN-3-IS-SAFE-FROM-MERGING 2 1))

(IF-CHAIN-2-IS-OF-MAXIMUM-SIZE 9 (SIZE-OF-CHAIN-2)))

(+ (IF-CHAIN-3-IS-OF-MAXIMUM-SIZE 1 7)

(IF-CHAIN-3-IS-SAFE-FROM-MERGING 2 1)))

� Pair 2—Place-Tile from generation 19:

(- (IF-CHAIN-3-IS-SAFE-FROM-MERGING

(DIST-TO-NEAREST-NEIGHBOR-OF-CHAIN-3)

(STOCK-HELD-BY-PLAYER-IN-CHAIN-1))

(+ (+ (IF-I-AM-MAJ-STOCKHOLDER-IN-CHAIN-2

(DIST-TO-NEAREST-NEIGHBOR-OF-CHAIN-1)

(MERGER-VALUE-OF-CHAIN-3))

(- (PRICE-OF-CHAIN-1)

(PAYOFF-VALUE-TO-PLAYER-OF-CHAIN-3)))

(IF-CHAIN-3-IS-SAFE-FROM-MERGING

(IF-CHAIN-2-IS-SAFE-FROM-MERGING

(DIST-TO-NEAREST-NEIGHBOR-OF-CHAIN-3)

(STOCK-HELD-BY-PLAYER-IN-CHAIN-3))

(IF-CHAIN-3-IS-OF-MAXIMUM-SIZE

(SIZE-OF-CHAIN-3)

(STOCKS-LEFT-OF-CHAIN-1)))))
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—Buy-Stock from generation 0:

(- (* (STOCK-HELD-BY-PLAYER-IN-CHAIN-1)

0)

(IF-CHAIN-3-IS-OF-MAXIMUM-SIZE

4

(SIZE-OF-CHAIN-1)))

� Pair 3—Place-Tile from generation 38:

(- (IF-I-AM-MAJ-STOCKHOLDER-IN-CHAIN-2

(IF-CHAIN-2-IS-SAFE-FROM-MERGING

(DIST-TO-NEAREST-NEIGHBOR-OF-CHAIN-3)

(STOCK-HELD-BY-PLAYER-IN-CHAIN-3))

(IF-I-AM-MAJ-STOCKHOLDER-IN-CHAIN-2

(STOCK-HELD-BY-PLAYER-IN-CHAIN-2)

(PRICE-OF-CHAIN-1)))

(+ (+ (MERGER-VALUE-OF-CHAIN-3)

(- (PRICE-OF-CHAIN-1)

(STOCKS-LEFT-OF-CHAIN-3)))

(PERIMETER-OF-CHAIN-2)))

—Buy-Stock from generation 47:

(* (IF-CHAIN-2-IS-SAFE-FROM-MERGING

(IF-CHAIN-3-IS-SAFE-FROM-MERGING

(DIST-TO-NEAREST-NEIGHBOR-OF-CHAIN-3) 8)

1)

(+ (MERGER-VALUE-OF-CHAIN-3) 9))
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� Pair 4—Place-Tile from generation 46:

(- (DIST-TO-NEAREST-NEIGHBOR-OF-CHAIN-1)

(+ (IF-I-AM-MAJ-STOCKHOLDER-IN-CHAIN-2

(SIZE-OF-CHAIN-2)

(MERGER-VALUE-OF-CHAIN-3))

(IF-CHAIN-3-IS-OF-MAXIMUM-SIZE

(MERGER-VALUE-OF-CHAIN-3)

(STOCKS-LEFT-OF-CHAIN-1))))

—Buy-Stock from generation 32:

(DIV (MERGER-VALUE-OF-CHAIN-2)

(IF-I-AM-MAJ-STOCKHOLDER-IN-CHAIN-3

(IF-CHAIN-3-IS-SAFE-FROM-MERGING 2 1)

(PERIMETER-OF-CHAIN-3)))


