13,569 research outputs found

    SQL Query Completion for Data Exploration

    Full text link
    Within the big data tsunami, relational databases and SQL are still there and remain mandatory in most of cases for accessing data. On the one hand, SQL is easy-to-use by non specialists and allows to identify pertinent initial data at the very beginning of the data exploration process. On the other hand, it is not always so easy to formulate SQL queries: nowadays, it is more and more frequent to have several databases available for one application domain, some of them with hundreds of tables and/or attributes. Identifying the pertinent conditions to select the desired data, or even identifying relevant attributes is far from trivial. To make it easier to write SQL queries, we propose the notion of SQL query completion: given a query, it suggests additional conditions to be added to its WHERE clause. This completion is semantic, as it relies on the data from the database, unlike current completion tools that are mostly syntactic. Since the process can be repeated over and over again -- until the data analyst reaches her data of interest --, SQL query completion facilitates the exploration of databases. SQL query completion has been implemented in a SQL editor on top of a database management system. For the evaluation, two questions need to be studied: first, does the completion speed up the writing of SQL queries? Second , is the completion easily adopted by users? A thorough experiment has been conducted on a group of 70 computer science students divided in two groups (one with the completion and the other one without) to answer those questions. The results are positive and very promising

    Finding Top-k Dominance on Incomplete Big Data Using Map-Reduce Framework

    Full text link
    Incomplete data is one major kind of multi-dimensional dataset that has random-distributed missing nodes in its dimensions. It is very difficult to retrieve information from this type of dataset when it becomes huge. Finding top-k dominant values in this type of dataset is a challenging procedure. Some algorithms are present to enhance this process but are mostly efficient only when dealing with a small-size incomplete data. One of the algorithms that make the application of TKD query possible is the Bitmap Index Guided (BIG) algorithm. This algorithm strongly improves the performance for incomplete data, but it is not originally capable of finding top-k dominant values in incomplete big data, nor is it designed to do so. Several other algorithms have been proposed to find the TKD query, such as Skyband Based and Upper Bound Based algorithms, but their performance is also questionable. Algorithms developed previously were among the first attempts to apply TKD query on incomplete data; however, all these had weak performances or were not compatible with the incomplete data. This thesis proposes MapReduced Enhanced Bitmap Index Guided Algorithm (MRBIG) for dealing with the aforementioned issues. MRBIG uses the MapReduce framework to enhance the performance of applying top-k dominance queries on huge incomplete datasets. The proposed approach uses the MapReduce parallel computing approach using multiple computing nodes. The framework separates the tasks between several computing nodes that independently and simultaneously work to find the result. This method has achieved up to two times faster processing time in finding the TKD query result in comparison to previously presented algorithms

    Qualitative Effects of Knowledge Rules in Probabilistic Data Integration

    Get PDF
    One of the problems in data integration is data overlap: the fact that different data sources have data on the same real world entities. Much development time in data integration projects is devoted to entity resolution. Often advanced similarity measurement techniques are used to remove semantic duplicates from the integration result or solve other semantic conflicts, but it proofs impossible to get rid of all semantic problems in data integration. An often-used rule of thumb states that about 90% of the development effort is devoted to solving the remaining 10% hard cases. In an attempt to significantly decrease human effort at data integration time, we have proposed an approach that stores any remaining semantic uncertainty and conflicts in a probabilistic database enabling it to already be meaningfully used. The main development effort in our approach is devoted to defining and tuning knowledge rules and thresholds. Rules and thresholds directly impact the size and quality of the integration result. We measure integration quality indirectly by measuring the quality of answers to queries on the integrated data set in an information retrieval-like way. The main contribution of this report is an experimental investigation of the effects and sensitivity of rule definition and threshold tuning on the integration quality. This proves that our approach indeed reduces development effort — and not merely shifts the effort to rule definition and threshold tuning — by showing that setting rough safe thresholds and defining only a few rules suffices to produce a ‘good enough’ integration that can be meaningfully used

    TLAD 2010 Proceedings:8th international workshop on teaching, learning and assesment of databases (TLAD)

    Get PDF
    This is the eighth in the series of highly successful international workshops on the Teaching, Learning and Assessment of Databases (TLAD 2010), which once again is held as a workshop of BNCOD 2010 - the 27th International Information Systems Conference. TLAD 2010 is held on the 28th June at the beautiful Dudhope Castle at the Abertay University, just before BNCOD, and hopes to be just as successful as its predecessors.The teaching of databases is central to all Computing Science, Software Engineering, Information Systems and Information Technology courses, and this year, the workshop aims to continue the tradition of bringing together both database teachers and researchers, in order to share good learning, teaching and assessment practice and experience, and further the growing community amongst database academics. As well as attracting academics from the UK community, the workshop has also been successful in attracting academics from the wider international community, through serving on the programme committee, and attending and presenting papers.This year, the workshop includes an invited talk given by Richard Cooper (of the University of Glasgow) who will present a discussion and some results from the Database Disciplinary Commons which was held in the UK over the academic year. Due to the healthy number of high quality submissions this year, the workshop will also present seven peer reviewed papers, and six refereed poster papers. Of the seven presented papers, three will be presented as full papers and four as short papers. These papers and posters cover a number of themes, including: approaches to teaching databases, e.g. group centered and problem based learning; use of novel case studies, e.g. forensics and XML data; techniques and approaches for improving teaching and student learning processes; assessment techniques, e.g. peer review; methods for improving students abilities to develop database queries and develop E-R diagrams; and e-learning platforms for supporting teaching and learning

    Why do These Match? Explaining the Behavior of Image Similarity Models

    Full text link
    Explaining a deep learning model can help users understand its behavior and allow researchers to discern its shortcomings. Recent work has primarily focused on explaining models for tasks like image classification or visual question answering. In this paper, we introduce Salient Attributes for Network Explanation (SANE) to explain image similarity models, where a model's output is a score measuring the similarity of two inputs rather than a classification score. In this task, an explanation depends on both of the input images, so standard methods do not apply. Our SANE explanations pairs a saliency map identifying important image regions with an attribute that best explains the match. We find that our explanations provide additional information not typically captured by saliency maps alone, and can also improve performance on the classic task of attribute recognition. Our approach's ability to generalize is demonstrated on two datasets from diverse domains, Polyvore Outfits and Animals with Attributes 2. Code available at: https://github.com/VisionLearningGroup/SANEComment: Accepted at ECCV 202

    TLAD 2010 Proceedings:8th international workshop on teaching, learning and assesment of databases (TLAD)

    Get PDF
    This is the eighth in the series of highly successful international workshops on the Teaching, Learning and Assessment of Databases (TLAD 2010), which once again is held as a workshop of BNCOD 2010 - the 27th International Information Systems Conference. TLAD 2010 is held on the 28th June at the beautiful Dudhope Castle at the Abertay University, just before BNCOD, and hopes to be just as successful as its predecessors.The teaching of databases is central to all Computing Science, Software Engineering, Information Systems and Information Technology courses, and this year, the workshop aims to continue the tradition of bringing together both database teachers and researchers, in order to share good learning, teaching and assessment practice and experience, and further the growing community amongst database academics. As well as attracting academics from the UK community, the workshop has also been successful in attracting academics from the wider international community, through serving on the programme committee, and attending and presenting papers.This year, the workshop includes an invited talk given by Richard Cooper (of the University of Glasgow) who will present a discussion and some results from the Database Disciplinary Commons which was held in the UK over the academic year. Due to the healthy number of high quality submissions this year, the workshop will also present seven peer reviewed papers, and six refereed poster papers. Of the seven presented papers, three will be presented as full papers and four as short papers. These papers and posters cover a number of themes, including: approaches to teaching databases, e.g. group centered and problem based learning; use of novel case studies, e.g. forensics and XML data; techniques and approaches for improving teaching and student learning processes; assessment techniques, e.g. peer review; methods for improving students abilities to develop database queries and develop E-R diagrams; and e-learning platforms for supporting teaching and learning
    corecore