2,040 research outputs found

    Service-oriented wireless sensor networks and an energy-aware mesh routing algorithm

    Full text link
    Service-oriented wireless sensor networks (WSNs) are being paid more and more attention because service computing can hide complexity of WSNs and enables simple and transparent access to individual sensor nodes. Existing WSNs mainly use IEEE 802.15.4 as their communication specification, however, this protocol suite cannot support IP-based routing and service-oriented access because it only specifies a set of physical- and MAC-layer protocols. For inosculating WSNs with IP networks, IEEE proposed a 6LoWPAN (IPv6 over LoW Power wireless Area Networks) as the adaptation layer between IP and MAC layers. However, it is still a challenging task how to discover and manage sensor resources, guarantee the security of WSNs and route messages over resource-restricted sensor nodes. This paper is set to address such three key issues. Firstly, we propose a service-oriented WSN architectural model based on 6LoWPAN and design a lightweight service middleware SOWAM (service-oriented WSN architecture middleware), where each sensor node provides a collection of services and is managed by our SOWAM. Secondly, we develop a security mechanism for the authentication and secure connection among users and sensor nodes. Finally, we propose an energyaware mesh routing protocol (EAMR) for message transmission in a WSN with multiple mobile sinks, aiming at prolonging the lifetime of WSNs as long as possible. In our EAMR, sensor nodes with the residual energy lower than a threshold do not forward messages for other nodes until the threshold is leveled down. As a result, the energy consumption is evened over sensor nodes significantly. The experimental results demonstrate the feasibility of our service-oriented approach and lightweight middleware SOWAM, as well as the effectiveness of our routing algorithm EAMR.<br /

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Overlay virtualized wireless sensor networks for application in industrial internet of things : a review

    Get PDF
    Abstract: In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions
    • …
    corecore