11,504 research outputs found

    Soft-Defined Heterogeneous Vehicular Network: Architecture and Challenges

    Full text link
    Heterogeneous Vehicular NETworks (HetVNETs) can meet various quality-of-service (QoS) requirements for intelligent transport system (ITS) services by integrating different access networks coherently. However, the current network architecture for HetVNET cannot efficiently deal with the increasing demands of rapidly changing network landscape. Thanks to the centralization and flexibility of the cloud radio access network (Cloud-RAN), soft-defined networking (SDN) can conveniently be applied to support the dynamic nature of future HetVNET functions and various applications while reducing the operating costs. In this paper, we first propose the multi-layer Cloud RAN architecture for implementing the new network, where the multi-domain resources can be exploited as needed for vehicle users. Then, the high-level design of soft-defined HetVNET is presented in detail. Finally, we briefly discuss key challenges and solutions for this new network, corroborating its feasibility in the emerging fifth-generation (5G) era

    Weighing-in-motion wireless system for sustainable railway transport

    Get PDF
    Railway transport is well known as one of the safest and most energy-efficient transport modes, thus favoring its strengthening as part of a sustainable transport system. Yet, the track service life and the quality of the ride on a railway are dependent upon different factors, which can be assessed by a diverse set of technology based systems. In this context, this paper presents the EVO4Rail project that seeks to design, develop and implement a wireless monitoring system for weighing-in-motion and detecting faulty wheels in railway vehicles, positively impacting railway operation, maintenance and management, ultimately aiming at a sustainable rail transport.info:eu-repo/semantics/publishedVersio

    A communication platform demonstrator for new generation railway traffic management systems: Testing and validation

    Get PDF
    Current rail traffic management and control systems cannot be easily upgraded to the new needs and challenges of modern railway systems because they do not offer interoperable data structures and standardized communication interfaces. To meet this need, the Horizon 2020 Shift2Rail OPTIMA project has developed a communication platform for testing and validating the new generation of traffic management systems (TMS), whose main innovative features are the interoperability of the data structures used, standardization of communications, continuous access to real-time and persistent data from heterogeneous data sources, modularity of components and scalability of the platform. This paper presents the main components, their functions and characteristics, then describes the testing and validation of the platform, even when federated with other innovative TMS modules developed in separate projects. The successful validation of the system has confirmed the achievement of the objectives set and allowed a new set of objectives to be defined for the reference platform for the railway TMS/Traffic Control systems

    Digital Railway System

    Get PDF

    Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices

    Full text link
    Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting low-latency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein
    corecore