63 research outputs found

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system

    Multi-Antenna Techniques for Next Generation Cellular Communications

    Get PDF
    Future cellular communications are expected to offer substantial improvements for the pre- existing mobile services with higher data rates and lower latency as well as pioneer new types of applications that must comply with strict demands from a wider range of user types. All of these tasks require utmost efficiency in the use of spectral resources. Deploying multiple antennas introduces an additional signal dimension to wireless data transmissions, which provides a significant alternative solution against the plateauing capacity issue of the limited available spectrum. Multi-antenna techniques and the associated key enabling technologies possess unquestionable potential to play a key role in the evolution of next generation cellular systems. Spectral efficiency can be improved on downlink by concurrently serving multiple users with high-rate data connections on shared resources. In this thesis optimized multi-user multi-input multi-output (MIMO) transmissions are investigated on downlink from both filter design and resource allocation/assignment points of view. Regarding filter design, a joint baseband processing method is proposed specifically for high signal-to-noise ratio (SNR) conditions, where the necessary signaling overhead can be compensated for. Regarding resource scheduling, greedy- and genetic-based algorithms are proposed that demand lower complexity with large number of resource blocks relative to prior implementations. Channel estimation techniques are investigated for massive MIMO technology. In case of channel reciprocity, this thesis proposes an overhead reduction scheme for the signaling of user channel state information (CSI) feedback during a relative antenna calibration. In addition, a multi-cell coordination method is proposed for subspace-based blind estimators on uplink, which can be implicitly translated to downlink CSI in the presence of ideal reciprocity. Regarding non-reciprocal channels, a novel estimation technique is proposed based on reconstructing full downlink CSI from a select number of dominant propagation paths. The proposed method offers drastic compressions in user feedback reports and requires much simpler downlink training processes. Full-duplex technology can provide up to twice the spectral efficiency of conventional resource divisions. This thesis considers a full-duplex two-hop link with a MIMO relay and investigates mitigation techniques against the inherent loop-interference. Spatial-domain suppression schemes are developed for the optimization of full-duplex MIMO relaying in a coverage extension scenario on downlink. The proposed methods are demonstrated to generate data rates that closely approximate their global bounds

    Architectures and synchronization techniques for distributed satellite systems: a survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.This work was supported by the Luxembourg National Research Fund (FNR), through the CORE Project COHEsive SATellite (COHESAT): Cognitive Cohesive Networks of Distributed Units for Active and Passive Space Applications, under Grant FNR11689919.Award-winningPostprint (published version

    Técnicas de equalização para MIMO massivo com amplificação não linear

    Get PDF
    The dawn of the new generation of mobile communications and the trafic explosion that derives from its implementation pose great challenge. The milimeter wave band and the use of massive number of antennas are technologies which, when combined, allow the transmission of high data rate, functioning in zones of the electromagnetic spectrum that are less explored and with capability of allocation of dozens of GHz of bandwidth. In this dissertation we consider a massive MIMO millimeter wave system employing a hybrid architecture, i.e., the number of transmit and receive antennas are lower than the number of radio frequency chains. As consequence, the precoder and equalizers should be designed in both digital and analog domains. In the literature, most of the proposed hybrid beamforming schemes were evaluated without considering the effects of nonlinear amplifications. However, these systems face non-avoidable nonlinear effects due to power amplifiers functioning in nonlinear regions. The strong nonlinear effects throughout the transmission chain will have a negative impact on the overall system performance and thus its study and the design of equalizers that take into account these effects are of paramount importance. This dissertation proposes a hybrid iterative equalizer for massive MIMO millimeter wave SC-FDMA systems. The user terminals have low complexity, just equipped with analog precoders based on average angle of departure, each with a single radio frequency chain. At the base station it is designed an hybrid analog-digital iterative equalizer with fully connected architecture in order to eliminate both the multi-user interference and the nonlinear distortion caused by signal amplification during the transmission. The equalizer is optimized by minimizing the bit error rate, which is equivalent to minimize the mean square error rate. The impact of the saturation threshold of the amplifiers in the system performance is analysed, and it is demonstrated that the iterative process can efficiently remove the multi-user interference and the distortion, improving the overall system performance.O surgimento de uma nova geração de comunicações móveis e a explosão de tráfego que advém da sua implementação apresenta grandes desafios. A banda de ondas milimétricas e o uso massivo de antenas são tecnologias que, combinadas, permitem atingir elevadas taxas de transmissão, funcionando em zonas do espectro electromagnético menos exploradas e com capacidade de alocação de dezenas de GHz para largura de banda. Nesta dissertação foi considerado um sistema de MIMO massivo de ondas milimétricas usando uma arquitectura híbrida, i.e., o número de antenas para transmissão e recepção é menor que o número de cadeias de radiofrequência. Consequentemente, o pré-codificador e equalizadores devem ser projectados nos domínios digital e analógico. Na literatura, a maioria dos esquemas híbridos de beamforming são avaliados sem ter em conta os efeitos de não linearidade da amplificação do sinal. No entanto, estes sistemas sofrem inevitavelmente de efeitos não lineares devido aos amplificadores de potência operarem em regiões não lineares. Os fortes efeitos das não-linearidades ao longo da cadeia de transmissão têm um efeito nefasto no desempenho do sistema e portanto o seu estudo e projecto de equalizadores que tenham em conta estes efeitos são de extrema importância. Esta dissertação propõe um equalizador híbrido para sistemas baseados em ondas milimétricas para MIMO massivo com modulação SC-FDMA. Os terminais de utilizador possuem baixa complexidade, equipados apenas com pré-codificadores analógicos baseados no ângulo médio de partida, cada um com uma única cadeia de radiofrequência. Na estação base é projectado um equalizador iterativo híbrido analógico-digital com arquitectura completamente conectada de modo a eliminar a interferencia multi-utilizador e a distorção causada pela amplificação do sinal aquando da transmissão. O equalizador é optimizado minimizando a taxa de erro de bit, o que é equivalente a minimizar a taxa de erro quadrático médio. O impacto do limiar de saturação dos amplificadores no desempenho do sistema é analisado, e é demonstrado que o processo iterativo consegue eliminar de modo eficiente a interferência multi-utilizador e a distorção, melhorando o desempenho do sistema.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Architectures and Synchronization Techniques for Distributed Satellite Systems: A Survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field

    Modeling and Linearization of MIMO RF Transmitters

    Get PDF
    Multiple-input multiple-output (MIMO) technology will continue to play a vital role in next-generation wireless systems, e.g., the fifth-generation wireless networks (5G). Large-scale antenna arrays (also called massive MIMO) seem to be the most promising physical layer solution for meeting the ever-growing demand for high spectral efficiency. Large-scale MIMO arrays are typically deployed with high integration and using low-cost components. Hence, they are prone to different hardware impairments such as crosstalk between the transmit antennas and power amplifier (PA) nonlinearities, which distort the transmitted signal. To avert the performance degradation due to these impairments, it is essential to have mechanisms for predicting the output of the MIMO arrays. Such prediction mechanisms are mandatory for performance evaluation and, more importantly, for the adoption of proper compensation techniques such as digital predistortion (DPD) schemes. This has stirred a considerable amount of interest among researchers to develop new hardware and signal processing solutions to address the requirements of large-scale MIMO systems. In the context of MIMO systems, one particular problem is that the hardware cost and complexity scale up with the increase of the size of the MIMO system. As a result, the MIMO systems tend to be implemented on a chip and are very compact. Reduction of the cost by reducing the bill of material is possible when several components are eliminated. The reuse of already existing hardware is an alternative solution. As a result, such systems are prone to excessive sources of distortion, such as crosstalk. Accordingly, crosstalk in MIMO systems in its simplest form can affect the DPD coefficient estimation scheme. In this thesis, the effect of crosstalk on two main DPD estimation techniques, know as direct learning algorithm (DLA) and indirect learning algorithm (ILA), is studied. The PA behavioral modeling and DPD scheme face several challenges that seek cost-efficient and flexible solutions too. These techniques require constant capture of the PA output feedback signal, which ultimately requires the implementation of a complete transmitter observation receiver (TOR) chain for the individual transmit path. In this thesis, a technique to reuse the receiver path of the MIMO TDD transceiver as a TOR is developed, which is based on over-the-air (OTA) measurements. With these techniques, individual PA behavioral modeling and DPD can be done by utilizing a few receivers of the MIMO TDD system. To use OTA measurements, an on-site antenna calibration scheme is developed to individually estimate the coupling between the transmitter and the receiver antennas. Furthermore, a digital predistortion technique for compensating the nonlinearity of several PAs in phased arrays is presented. The phased array can be a subset of massive MIMO systems, and it uses several antennas to steer the transmitted signal in a particular direction by appropriately assigning the magnitude and the phase of the transmitted signal from each antenna. The particular structure of phased arrays requires the linearization of several PAs with a single DPD. By increasing the number of RF branches and consequently increasing the number of PAs in the phased array, the linearization task becomes challenging. The DPD must be optimized to results in the best overall linear performance of the phased array in the field. The problem of optimized DPD for phased array has not been addressed appropriately in the literature. In this thesis, a DPD technique is developed based on an optimization problem to address the linearization of PAs with high variations. The technique continuously optimizes the DPD coefficients through several iterations considering the effect of each PA simultaneously. Therefore, it results in the best optimized DPD performance for several PAs. Extensive analysis, simulations, and measurement evaluation is carried out as a proof of concept. The different proposed techniques are compared with conventional approaches, and the results are presented. The techniques proposed in this thesis enable cost-efficient and flexible signal processing approaches to facilitate the development of future wireless communication systems

    Interference mitigation using group decoding in multiantenna systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore