7 research outputs found

    Optimal Prediction for Prefetching in the Worst Case

    Get PDF
    AMS subject classi cations. 68Q25, 68T05, 68P20, 68N25, 60J20 PII. S0097539794261817Response time delays caused by I/O are a major problem in many systems and database applications. Prefetching and cache replacement methods are attracting renewed attention because of their success in avoiding costly I/Os. Prefetching can be looked upon as a type of online sequential prediction, where the predictions must be accurate as well as made in a computationally e cient way. Unlike other online problems, prefetching cannot admit a competitive analysis, since the optimal o ine prefetcher incurs no cost when it knows the future page requests. Previous analytical work on prefetching [J. Assoc. Comput. Mach., 143 (1996), pp. 771{793] consisted of modeling the user as a probabilistic Markov source. In this paper, we look at the much stronger form of worst-case analysis and derive a randomized algorithm for pure prefetching. We compare our algorithm for every page request sequence with the important class of nite state prefetchers, making no assumptions as to how the sequence of page requests is generated. We prove analytically that the fault rate of our online prefetching algorithm converges almost surely for every page request sequence to the fault rate of the optimal nite state prefetcher for the sequence. This analysis model can be looked upon as a generalization of the com- petitive framework, in that it compares an online algorithm in a worst-case manner over all sequences with a powerful yet nonclairvoyant opponent. We simultaneously achieve the computational goal of implementing our prefetcher in optimal constant expected time per prefetched page using the optimal dynamic discrete random variate generator of Matias, Vitter, and Ni [Proc. 4th Annual SIAM/ACM Symposium on Discrete Algorithms, Austin, TX, January 1993]

    Optimal Prediction for Prefetching in the Worst Case

    Get PDF
    This is the published version. Copyright © 1998 Society for Industrial and Applied MathematicsResponse time delays caused by I/O are a major problem in many systems and database applications. Prefetching and cache replacement methods are attracting renewed attention because of their success in avoiding costly I/Os. Prefetching can be looked upon as a type of online sequential prediction, where the predictions must be accurate as well as made in a computationally efficient way. Unlike other online problems, prefetching cannot admit a competitive analysis, since the optimal offline prefetcher incurs no cost when it knows the future page requests. Previous analytical work on prefetching [. Vitter Krishnan 1991.] [J. Assoc. Comput. Mach., 143 (1996), pp. 771--793] consisted of modeling the user as a probabilistic Markov source. In this paper, we look at the much stronger form of worst-case analysis and derive a randomized algorithm for pure prefetching. We compare our algorithm for every page request sequence with the important class of finite state prefetchers, making no assumptions as to how the sequence of page requests is generated. We prove analytically that the fault rate of our online prefetching algorithm converges almost surely for every page request sequence to the fault rate of the optimal finite state prefetcher for the sequence. This analysis model can be looked upon as a generalization of the competitive framework, in that it compares an online algorithm in a worst-case manner over all sequences with a powerful yet nonclairvoyant opponent. We simultaneously achieve the computational goal of implementing our prefetcher in optimal constant expected time per prefetched page using the optimal dynamic discrete random variate generator of [. Matias Matias, Vitter, and Ni [Proc. 4th Annual SIAM/ACM Symposium on Discrete Algorithms, Austin, TX, January 1993]

    Formalization of Discrete-time Markov Chains in HOL

    Get PDF
    Markov chains are extensively used in the modeling and analysis of engineering and scientific problems which can be expressed as random processes with the memoryless property. Usually, paper-and-pencil proofs, simulation or computer algebra software are used to analyze Markovian models. However, these techniques either are not scalable or do not guarantee accurate results, which are vital in safety-critical systems. To improve the accuracy of the analysis, probabilistic model checking has been recently proposed to formally analyze Markovian systems. However, model checking suffers from the inherent state-explosion problem and thus has a very limited scope in terms of analyzing Markovian models.\newline \indent In order to overcome the above mentioned limitations, this thesis advocates the usage of higher-order-logic theorem proving for conducting the analysis of Markov chains. We present the higher-order-logic formalization of Discrete-time Markov Chains with finite number of discrete states. We also verify some of their most widely used properties using a theorem prover. These foundations allow us to formally express and reason about Markov chains within the sound core of a theorem prover and thus attain precise results. Moreover, by building upon these foundational results, this thesis also presents the formalization of classified discrete-time Markov chains and hidden Markov chains in higher-order logic. These are widely used concepts in the analysis of Markovian models and thus allow us to tackle the formal analysis of a wide range of engineering and scientific systems. For illustration purposes, the thesis also presents some applications including a binary communication channel, the automatic mail quality measurement (AMQM) protocol, a DNA sequence, a least recently used (LRU) stack model and the birth-death process

    Performance of Computer Systems; Proceedings of the 4th International Symposium on Modelling and Performance Evaluation of Computer Systems, Vienna, Austria, February 6-8, 1979

    Get PDF
    These proceedings are a collection of contributions to computer system performance, selected by the usual refereeing process from papers submitted to the symposium, as well as a few invited papers representing significant novel contributions made during the last year. They represent the thrust and vitality of the subject as well as its capacity to identify important basic problems and major application areas. The main methodological problems appear in the underlying queueing theoretic aspects, in the deterministic analysis of waiting time phenomena, in workload characterization and representation, in the algorithmic aspects of model processing, and in the analysis of measurement data. Major areas for applications are computer architectures, data bases, computer networks, and capacity planning. The international importance of the area of computer system performance was well reflected at the symposium by participants from 19 countries. The mixture of participants was also evident in the institutions which they represented: 35% from universities, 25% from governmental research organizations, but also 30% from industry and 10% from non-research government bodies. This proves that the area is reaching a stage of maturity where it can contribute directly to progress in practical problems

    Queuing network models and performance analysis of computer systems

    Get PDF

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore