
OPTIMAL PREDICTION FOR PREFETCHING
IN THE WORST CASE∗

P. KRISHNAN† AND JEFFREY SCOTT VITTER‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1617–1636, December 1998 006

Abstract. Response time delays caused by I/O are a major problem in many systems and
database applications. Prefetching and cache replacement methods are attracting renewed attention
because of their success in avoiding costly I/Os. Prefetching can be looked upon as a type of online
sequential prediction, where the predictions must be accurate as well as made in a computationally
efficient way. Unlike other online problems, prefetching cannot admit a competitive analysis, since the
optimal offline prefetcher incurs no cost when it knows the future page requests. Previous analytical
work on prefetching [J. Assoc. Comput. Mach., 143 (1996), pp. 771–793] consisted of modeling the
user as a probabilistic Markov source.

In this paper, we look at the much stronger form of worst-case analysis and derive a randomized
algorithm for pure prefetching. We compare our algorithm for every page request sequence with the
important class of finite state prefetchers, making no assumptions as to how the sequence of page
requests is generated. We prove analytically that the fault rate of our online prefetching algorithm
converges almost surely for every page request sequence to the fault rate of the optimal finite state
prefetcher for the sequence. This analysis model can be looked upon as a generalization of the com-
petitive framework, in that it compares an online algorithm in a worst-case manner over all sequences
with a powerful yet nonclairvoyant opponent. We simultaneously achieve the computational goal of
implementing our prefetcher in optimal constant expected time per prefetched page using the optimal
dynamic discrete random variate generator of Matias, Vitter, and Ni [Proc. 4th Annual SIAM/ACM
Symposium on Discrete Algorithms, Austin, TX, January 1993].

Key words. caching, prefetching, competitive analysis, finite state prefetchers, response time,
fault rate, hypertext, operating systems, databases, prediction, machine learning

AMS subject classifications. 68Q25, 68T05, 68P20, 68N25, 60J20

PII. S0097539794261817

1. Introduction. Most computer memories are organized hierarchically. A typ-
ical two-level memory consists of a relatively small but fast cache (such as internal
memory) and a relatively large but slow memory (such as disk storage). Two-level
memories can also model on-chip versus off-chip memory in VLSI systems. The pages
requested by an application must be in cache before computation can proceed. In the
event that a requested page is not in cache, a page fault occurs and the application has
to wait while the page is fetched from slow memory to cache. The method of fetching
pages into cache only when a fault occurs is called demand fetching. The problem of
cache replacement is to decide which pages to remove from cache to accommodate the
incoming pages.

In many systems and database applications, users spend a significant amount of

∗Received by the editors January 19, 1994; accepted for publication (in revised form) August
26, 1996; published electronically June 3, 1998. An extended abstract appears in the Proceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, January 1994,
pp. 392–401.

http://www.siam.org/journals/sicomp/27-6/26181.html
†Bell Laboratories, 101 Crawfords Corner Road, Holmdel, NJ 07733-3030 (pk@research.

bell-labs.com). Support was provided in part by the Office of Naval Research and the Defense
Advanced Research Projects Agency under contract N00014–91–J–4052, ARPA order 8225, and by
Air Force Office of Scientific Research grants F49620–92–J–0515 and F49620–94–1–0217. This work
was done while the author was associated with Brown University and Duke University.

‡Dept. of Computer Science, Duke University, Durham, NC 27708–0129 (jsv@cs.duke.edu). Sup-
port was provided in part by National Science Foundation research grants CCR–9007851 and CCR–
9522047, by Air Force Office of Scientific Research grants F49620–92–J–0515 and F49620–94–1–0217,
and by a Universities Space Research Association/CESDIS associate membership.

1617

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213392892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1618 P. KRISHNAN AND JEFFREY SCOTT VITTER

time processing a page, and the computer and I/O system are typically idle during
that period. If the computer can predict which page the user will request next, it
can fetch that page into cache (if it is not already in cache) before the user asks for
it. When the user requests the page, it is available in cache, and the user perceives
a faster response time. This method of getting pages into cache in the background
before they are requested is called prefetching.

In many hypertext and interactive database systems, there is often sufficient time
between user requests to prefetch as many pages as wanted, limited only by the
cache size k. We refer to prefetching under this assumption as pure prefetching,
and we restrict our analysis to pure prefetching in this paper. Pure prefetching is
an important theoretical and practical model that helps in analyzing the benefits of
fetching pages in the background.

In general applications, other issues come into play. For example, prefetches are
often done well in advance of when the page is expected to be needed, to take into
account latency [29, 31]. User requests can also preempt prefetch requests, resulting
in fewer than k prefetches being done at a time. In such situations, which we call
nonpure prefetching, issues of cache replacement come into play; the algorithm must
determine not only which page(s) to prefetch but also which page(s) to evict from
cache to make room. Pure prefetchers can be converted into efficient and practical
nonpure prefetchers by melding them with good cache replacement strategies. In
[10], pure prefetchers are used with the popular least recently used (LRU) cache
replacement strategy, and significant reductions in page fault rate (number of page
faults divided by the number of page requests) are demonstrated. We expect that
better pure prefetchers (e.g., the one developed in this paper) melded with better
cache replacement strategies (e.g., [5, 13, 19, 20]) may yield even more impressive
performance improvements.

An algorithm is online if it must make its decisions based only on the past his-
tory. An offline algorithm can use knowledge of the future. If the program generating
page requests is known a priori, prefetching decisions could be made offline, as is
done in compiler-directed prefetching [6, 29, 31] where prefetch instructions are ex-
plicitly inserted into the code. Without a priori knowledge or statistics of the user
request pattern, as is the case in many hypertext and interactive applications (e.g., the
world wide web), an algorithm for cache replacement or prefetching must be online.
An important computational requirement of online prefetching (and online demand
fetching) algorithms is that the time spent deciding which pages to fetch into (or evict
from) cache must be minimal. In this paper, we study online pure prefetching.

1.1. Analysis technique. The notion of competitiveness introduced by Sleator
and Tarjan [34] evaluates an online algorithm by comparing its performance with that
of offline algorithms. Competitive algorithms for cache replacement are well examined
in the literature [5, 13, 27, 34]. It is unreasonable to expect prefetching algorithms to
be competitive in this sense. The trivial optimal offline algorithm for prefetching never
faults, if it can prefetch at least one page every time. In order to be competitive, an
online algorithm would have to be an almost perfect predictor for any sequence, which
seems intuitively impossible. Some restrictions on the power of the offline algorithm
are therefore needed for a meaningful analysis.

Vitter and Krishnan [36] analyzed pure prefetching using a form of the compet-
itive philosophy; they assumed that the sequence of page requests was generated by
a probabilistic Markov source [14]. They showed that the prediction techniques in-
herent in data compression methods (such as the Lempel–Ziv algorithm [37]) can be



OPTIMAL PREDICTION FOR PREFETCHING 1619

used to get optimal pure prefetchers. Cache replacement has been studied by Karlin,
Phillips, and Raghavan [20] under a different stochastic version of the competitive
framework; the sequence of page requests was assumed to be generated by a Markov
chain (a subset of Markov sources). In [20, 36], the online prefetching or cache re-
placement algorithm is compared with the optimal online algorithm that has full prior
knowledge of the source. A PAC learning framework incorporating Markov sources
of examples was developed in [1]. Recent empirical work on prefetching includes a
pattern matching approach to prediction [30], computing various first-order statistics
for prediction [32], a growing-order Markov predictor [24], prefetching in a paral-
lel environment [22], and research projects at a lower level of abstraction including
compiler-directed prefetching [6, 29, 31].

In this paper, we develop a randomized algorithm for pure prefetching and show
its optimality in the limit under the following analysis strategy. Putting no restrictions
on the generator of page requests, we compare the page fault rate of our prefetcher
for every sequence of page requests with that of the best finite state prefetcher for the
sequence. We also show how to implement each prefetch in constant expected time,
independent of the number of pages in the database and the cache size, which is
optimal.

The analysis strategy used in this paper is much stronger than the ones in [20, 36]
for the following reasons. First, our comparison is for all sequences, without any
assumption about how the sequences are generated. Second, although the comparison
in [20, 36] is against the optimal computationally unlimited online algorithm with full
a priori knowledge of the source, it is the case for prefetching and cache replacement
that when the page request sequences are generated by a finite state Markov source
(or a Markov chain), the optimal online algorithm is finite state. (See [36, Definition 4]
and [20, Theorem 2].) In particular, the fault rate of the prefetcher we develop in this
paper is asymptotically the same as the fault rate of the optimal prefetcher from [36]
when the source is finite state Markov.

Pure prefetching can be looked upon as the following prediction problem: given
an arbitrary alphabet of size α (the set of α pages in the database) and a sequence
of (page) requests drawn from this alphabet, at each time instant we have to predict
the best k choices for the k pages to prefetch into cache. Randomness is required in
order for a predictor or prefetcher to be optimal for every sequence when compared
with finite state prefetchers (FSPs) [7]. (Also see Appendix A.) In the fields of infor-
mation theory and statistics [4, 8, 12, 17] interesting algorithms for binary sequences
(corresponding to an alphabet size of α = 2 pages) that make one prediction for the
next page (corresponding to cache size k = 1) have been developed independently of
[36], and the comparison is made with the best finite state predictor. However, the
α = 2, k = 1 case is clearly unsuitable for our prefetching scenario. The procedure in
[17] may possibly be generalizable to the arbitrary alphabet case α ≥ 2 for cache size
k = 1, but it cannot possibly make a prediction in constant time independent of α,
and the k > 1 case is open. In [28], predictors are developed for various continuous
loss functions, but they are not relevant to the harder-to-analyze discontinuous 0–1
loss functions associated with cache replacement and prefetching. The solution to the
general case thus requires a fundamentally different approach from those mentioned
above.

1.2. This paper. Our major contribution in this paper is a randomized algo-
rithm for pure prefetching that achieves the optimal fault rate almost surely in the
limit against the class of FSPs and that is simultaneously optimal in terms of running



1620 P. KRISHNAN AND JEFFREY SCOTT VITTER

time for the general case of α ≥ 2 pages and cache size k ≥ 1. (“Almost surely”
means that the probability that convergence does not occur for an arbitrary sequence
converges to 0 as the sequence length n gets larger.)

Our analysis model and main results are summarized in the next section. In
section 3, we present our core prefetching algorithm P1, which makes use of sampling
without replacement, and we analyze it in section 4 by comparing it with the best one-
state prefetcher. In section 5 we draw on ideas from information theory [9] applied to
predicting [8, 12, 28] and generalize P1 to get a universal prefetcher P that is optimal
in the limit against a general FSP. The resulting optimal prefetcher P is a blend of
P1 and the prefetcher [36] based on the Lempel–Ziv data compressor [18, 25, 37].
We show in section 6 how to implement the prefetcher in constant expected time
per prefetched page, independent of alphabet size α and cache size k, by using the
optimal dynamic algorithm for generating discrete random variates of Matias, Vitter,
and Ni [26], which uses a table lookup method of Hagerup, Mehlhorn, and Munro [16].
Other issues are discussed in section 7.

2. Analysis model and main results. We denote the cache size by k and the
total number of different pages (or alphabet size) by α. We use the notation σji to
denote the subsequence of a (possibly infinite) sequence σ starting at the ith page
request up to and including the jth page request; in particular, σn1 denotes the first n
page requests of σ. Given a parsing of σn1 into subsequences, we will denote the jth
subsequence by σj .

Definition 1. An FSP is represented as a quintuple (S,A, g,D, z0), where S is
a finite set of states, A = {0, 1, 2, . . . , α−1} is a finite alphabet of cardinality |A| = α,
g is a deterministic “next state” function that maps S × A into S, D is a (possibly
randomized) decision strategy function that maps S into a k-tuple Ak, and z0 ∈ S is
the start state. The FSP prefetches at state z ∈ S the k pages specified by D(z), and
upon seeing the next page request i, it changes state from z to g(z, i). We denote the
set of all FSPs with at most s states by F(s).

We next define the best fault rate achieved on a sequence by the class of FSPs.
Definition 2. Given an FSP F and a sequence σn1 , we denote by FaultF (σn1 )

the fault rate of F on σn1 , that is, the number of page faults of F on σn1 (expected
number of page faults if F has a randomized decision strategy), divided by the length
n of the sequence. We define FaultF(s)(σ

n
1 ) to be infF∈F(s) FaultF (σn1 ). With a little

abuse of notation we also denote by FaultB(σn1 ) the fault rate of a nonfinite state
prefetcher B.

Intuitively, we can think of FaultF(s)(σ
n
1 ) as being given by an optimal offline

algorithm restricted by the finite state requirement. This means that unlike an offline
algorithm, the FSP does not know the sequence σn1 beforehand. However, it knows
how many times each of its transitions will be traversed when it is used to prefetch on
the sequence σn1 . In other words, the optimal FSP is a “weak” offline algorithm. For
example, the optimal one-state FSP for a sequence σn1 does not know σn1 but knows
how many times each page appears in σn1 . By simple convexity arguments it can be
verified that the optimal one-state FSP for σn1 will, when at state z, deterministically
prefetch the k pages corresponding to the k transitions out of z that are traversed
the maximum number of times. (Hence FaultF(s)(σ

n
1 ) = minF∈F(s) FaultF (σn1 ), the

minimum fault rate achieved by any FSP with at most s states on σn1 .) For example,
FaultF(1)(σ

n
1 ) is attained by the following one-state (zero-order) prefetcher F1: count

the number of times that page i, for 0 ≤ i ≤ α − 1, appears in σn1 . Let C1(σ
n
1 ) =

{i1, i2, . . . , ik} be k pages with the maximum k counts. At every time t, for 1 ≤ t ≤ n,



OPTIMAL PREDICTION FOR PREFETCHING 1621

predict the next page to be one of the k pages in C1(σ
n
1 ) (that is, we always keep the

same k pages in cache).We develop an online randomized prefetcher P1 that achieves on average the best
single-state (zero-order) prefetching fault rate FaultF(1)(σ

n
1 ) on every sequence σn1 of

length n in the limit as n→∞.
Theorem 1. For every sequence σn1 of length n drawn from alphabet A, the fault

rate of prefetcher P1 on σn1 converges almost surely to FaultF(1)(σ
n
1 ) as n → ∞. In

particular,

FaultP1(σ
n
1 ) ≤ FaultF(1)(σ

n
1 ) +O

(
log n√
n

)
.(1)

The main difficulty in developing P1 and its proof of optimality is that the alpha-
bet size α and the cache size k are arbitrary. We note that even for the α = 2, k = 1
case, the convergence rate cannot be faster than O(1/

√
n ) [7].

The importance of the above theorem lies in its generalization to higher order
using techniques from information theory [9]. The approach of [12] allows us to
combine P1 with a prefetcher [36] based on the Lempel–Ziv data compressor [18, 25,
37] to get a prefetcher P that is optimal in the limit against the class of FSPs.

Theorem 2. For every sequence σn1 of length n drawn from alphabet A, and any
s ≥ 0, the fault rate of prefetcher P on σn1 converges almost surely to FaultF(s)(σ

n
1 )

as n→∞.
From the observation in section 1.1 that under the model from [36] (where the

sequences of page requests are generated by a finite state Markov source), the optimal
prefetcher is also an FSP, we get the following corollary.

Corollary 1. Under the model from [36], where the sequences of page requests
are generated by a finite state Markov source M , the fault rate of prefetcher P con-
verges almost surely to the minimum fault rate of any online prefetcher with complete
a priori knowledge of the source M .

The expected running time for prefetcher P can be made optimal by using the
optimal dynamic random variate generator of [26].

Theorem 3. The prefetcher P runs in constant expected time (independent of
α and k) for each page prefetched; that is, it requires an average of O(k) time to
determine which k pages to prefetch.

The rate of convergence of Theorems 1 and 2 depends on the alphabet size α.
For example, the error term is O(αk2(log n)/

√
n ) in Theorem 1; for simplicity we

suppress the αk2 term in our discussion since it is insignificant w.r.t. n in the limit.
(Note that in general k � α.) However, the constant time bound for each prediction
is entirely independent of α and k, which is important from a computational point of
view.

3. The prefetching algorithm P1. In this section we give the algorithm P1

that matches the best one-state prefetcher in the limit. Before introducing P1, we
present the more intuitive algorithm P ′

1 upon which algorithm P1 is based.
Let t be the current time and let σt1 be the sequence of t pages requested until

now. Let fi(σ
t
1), 0 ≤ i ≤ α − 1, denote the number of times page i appears in σt1.

Define rt = 2j when 4j−1 < t ≤ 4j . That is, the integer rt is “close to”
√
t; it doubles

at discrete time steps (when t is one greater than a power of 4).
The key idea that prefetcher P ′

1 (and prefetcher P1) uses is to reduce the prob-
lem of prediction to the problem of generating random variates. Intuitively P ′

1

should choose for the cache the page i with the highest or nearly highest frequency



1622 P. KRISHNAN AND JEFFREY SCOTT VITTER

count fi(σ
t
1). (Randomness in the picking is required, by the remark in section 1 [7],

so it does not suffice to simply pick the page with the highest frequency count; see
Appendix A.1. Further, the “natural” randomized algorithm that prefetches page i
at time t with probability proportional to fi(σ

t
1) is also not optimal as shown in Ap-

pendix A.2.) In P ′
1 we get the effect of choosing the pages with the highest or nearly

highest counts by “boosting” the frequency counts of the page by a large power and
then choosing a page with probability proportional to its boosted count. (The boosted
counts will be very large but can be represented with O(log n) bits, using the scheme
discussed in section 6.) Efficient random variate generation with dynamically chang-
ing weights can be done using [26], as discussed in section 6.

The algorithm P ′
1 is a simple randomized weighting algorithm that makes k pre-

dictions at each time step for the next page request. At each time t and 0 ≤ i ≤ α−1,
P ′

1 assigns to page i a probability pi,t proportional to the boosted frequency count(
fi(σ

t
1)
)rt

,(2)

which is the rtth power of frequency fi(σ
t
1). It predicts k items for the next request

by choosing without replacement from the distribution p0,t, p1,t, . . . , pα−1,t.
Example 1. Let α = 3, k = 2. If the sequence σt1 of t = 9 pages seen until now is

210011102, we have f0(σ
9
1) = 3, f1(σ

9
1) = 4, f2(σ

9
1) = 2, and rt = 22 = 4. Algorithm

P ′
1 assigns probability p0,9 = 34/(34 + 44 + 24) ≈ 0.229 to page 0, probability p1,9 =

44/(34 + 44 + 24) ≈ 0.725 to page 1, and probability p2,9 = 24/(34 + 44 + 24) ≈ 0.045
to page 2. It predicts two pages out of these three by choosing without replacement
based on the above probability distribution. Pages 0 and 1 are the likely pages to be
chosen.

Algorithm P ′
1 can be shown to be optimal against the best one-state FSP for

general α ≥ 2 but only when k = 1 [23]. We can modify algorithm P ′
1 to get algorithm

P1 that is optimal against the best one-state FSP for general α ≥ 2, k ≥ 1.

Definition 3. We define subsequence σ0 = σ2
1, and σj = σ4j+1

4j−1+2 for j ≥ 1. We
call σj the jth r-subsequence of σn1 .

Notice from the definition of rt that P ′
1 predicts each page in an r-subsequence

using the same value for rt in (2) when t > 2.
Algorithm P1 works like algorithm P ′

1, except that the frequency counts for the
pages are reset to 0 at the start of each r-subsequence. That is, at time t > 1,
4j−1 < t ≤ 4j , algorithm P1 assigns to page i a probability pi,t proportional to(

fi(σ
t
4j−1+2)

)rt
.

Example 2. As in Example 1, let α = 3, k = 2, and let the sequence of t = 9
pages σt1 seen until now be 210011102. We have σ0 = 21, σ1 = 001, and the portion of
σ2 seen until now is 1102. The counts of pages 0, 1, and 2 in the current r-subsequence
are 1, 2, and 1, respectively, and rt = 22 = 4. Algorithm P1 assigns pages 0, 1, and 2
the probabilities p0,9 = 14/(14 +24 +14) ≈ 0.056, p1,9 = 24/(14 +24 +14) ≈ 0.889, and
p2,9 = 14/(14 + 24 + 14) ≈ 0.056, respectively. It predicts two pages out of these three
by choosing without replacement based on the above probability distribution.

This regular throwing away of past information by algorithm P1 makes the proof
of optimality more elegant. Algorithm P1 may also perform better than algorithm P ′

1

in practice, since it captures the effect of locality of reference found in page request
sequences [3, 5, 11, 19, 20, 33].

4. One-state case: Optimality of P1 vs. F(1). In this section we prove an
important special case of Theorem 1, namely, that the expected value of P1’s fault



OPTIMAL PREDICTION FOR PREFETCHING 1623

rate FaultP1
(σn1 ) converges to FaultF(1)(σ

n
1 ); the almost-sure convergence follows by

using the Borel–Cantelli lemma. As pointed out in section 2, given a sequence σn1 , the
following prefetcher F1 ∈ F(1) attains the minimum fault rate among all one-state
prefetchers: count the number of times page i, for 0 ≤ i ≤ α− 1, appears in σn1 . Let
C1(σ

n
1 ) = {i1, i2, . . . , ik} be the pages with the maximum k counts. For each time

instant t, 1 ≤ t ≤ n, F1 prefetches the k pages in C1(σ
n
1 ). We have

FaultF(1)(σ
n
1 ) = 1− fi1(σ

n
1 ) + fi2(σ

n
1 ) + · · ·+ fik,n(σn1 )

n
.(3)

We now define a balanced form of a subsequence and an approximately balanced
form of a sequence. These notions are useful in showing the optimality of P1.

Definition 4. A subsequence σ̂ba is a balanced form of σba if
1. σ̂ba has the same composition of pages as σba, that is, for all 0 ≤ i ≤ α − 1,

page i appears the same number of times in σ̂ba as it does in σba;
2. for each a ≤ t ≤ b, page σ̂tt occurs the maximal number of times in σ̂ta in

comparison with the other pages.
For example, if σ10

1 = 1111211321, a balanced form is σ̂10
1 = 123121211.

Definition 5. A sequence σ̃n1 is an approximately or piecewise balanced form
of σn1 if

σ̃n1 = σ̂0σ̂1σ̂2 . . . ,

where σ̂j is a balanced form of σj, and σj is the jth r-subsequence of σn1 as defined in
Definition 3.

By (3) and the first condition in Definition 4, we have FaultF(1)(σ
n
1 ) = FaultF(1)(σ̃

n
1 ).

Our strategy to show optimality of P1 (Theorem 1) is a two-step process described
by the following two theorems. First, we show that the fault rate of P1 on σn1 is never
more than the fault rate of P1 on the approximately balanced σ̃n1 .

Theorem 4. For every sequence σn1 , we have

FaultP1(σ
n
1 ) ≤ FaultP1(σ̃

n
1 ).(4)

We then compute the fault rate of P1 on the approximately balanced σ̃n1 and show
that it is close to the fault rate of the best one-state machine for σn1 .

Theorem 5. For every sequence σn1 , we have

FaultP1
(σ̃n1 )− FaultF(1)(σ

n
1 ) = O(log n/

√
n ).(5)

The proofs of the above two theorems are dealt with in the next two subsections.

4.1. The approximately balanced sequence is sufficiently worst case. In
this subsection we prove Theorem 4 using an interesting extension of the switch anal-
ysis of [12] in conjunction with the important notion of boosted frequency counts (2).

We denote the jth r-subsequence σj by πη1 , where η = 4j−4j−1 is the length of σj .
The sequence πη1 can be converted to a balanced form π̂η1 by an iterative balancing
strategy. Without loss of generality, let the (τ + 2)nd page request in πη1 be 1, and
let the (τ + 1)st page request of the balanced sequence π̂τ+1

1 be 0. We denote by fi
the number of times page i appears in π̂τ1 . In particular, we denote the number of 0’s
in π̂τ1 by f0, and the number of 1’s in π̂τ1 by f1. We consider the following iterative
balancing strategy to convert π̂τ+1

1 to π̂τ+2
1 .



1624 P. KRISHNAN AND JEFFREY SCOTT VITTER

Balancing strategy. Since π̂τ+1
1 is balanced, f1 ≤ f0 + 1. If f1 ≥ f0, then π̂τ+1

1

appended with a 1 gives π̂τ+2
1 . If f1 < f0, we perform a “01” → “10” switch at

position (τ + 1, τ + 2) by moving the 1 in front of the 0. We continue this process
of “bubbling” the 1 forward through π̂τ1 by performing similar switches, until the
subsequence of the first τ + 2 page requests of πη1 is balanced.

Our proof of Theorem 4 consists in showing that each switch in the balancing
strategy does not lower the page fault rate of the entire sequence.

A similar but simpler idea worked in the binary case for a different algorithm
[12], in which the sequence did not need to be broken up into subsequences, and the
sequence σ̂n1 could be shown to be strictly worst case. We break σn1 into subsequences
as part of our method for achieving optimal computational efficiency (as discussed in
section 6).

We now show that a switch within an r-subsequence can only increase the fault
rate for algorithm P1. The fact that we allow k ≥ 1 predictions before each page re-
quest makes the probability terms in the analysis conditional on the previous prefetches
at that time step, and that complicates the analysis.

Lemma 1. Each switch involved in converting πη1 to π̂η1 creates a subsequence on
which P1 has a larger fault rate (that is, switches within an r-subsequence increase
the fault rate).

Proof. Let us denote by A the probability of predicting the 0 in πτ101πητ+3 and
by B the probability of predicting the 1 in πτ101πητ+3, where the 0 and 1 are in the
same r-subsequence. Similarly, let us denote by C the probability of predicting the 1
in πτ110σητ+3, and by D the probability of predicting the 0 in πτ110σητ+3, where the
1 and 0 are in the same r-subsequence. The number of faults algorithm P1 makes
on the portions πτ1 and πητ+3 will be the same before and after the switch, since the
probability of fault by P1 at position x of πη1 depends only on the composition of pages
in πx1 . (Recall that P1 throws away all previous counts for pages at the beginning of
an r-subsequence.) To show that a switch increases the fault rate, we must show that
the increase in the number of faults caused by moving the 0 to later in the sequence
overshadows the decrease in the number of faults caused by moving the 1 to earlier
in the sequence; that is, we need to show that (1−A) + (1−B) ≤ (1−C) + (1−D).
This is equivalent to showing that

A−D ≥ C −B.(6)

If P1 makes only one prediction at each step, the proof of (6) is easy. (The proof
follows directly from (7) for the special case k = 1.) However, P1 makes k ≥ 1
predictions at each time instant.

Let A = A1 + A2 + · · · + Ak, where Ai is the probability of predicting the 0 in
πτ101πητ+3 in the ith prediction. The probabilities B,C,D are similarly partitioned.
Each Ai can be further broken up into a “good part” GA

i and a “bad part” RA
i . The

good part GA
i is the probability of the event that we predict the 0 in πτ101πητ+3 in

the ith prediction and that none of the previous i − 1 predictions was a 1. The bad
part RA

i is the probability of the event that we predict the 0 in πτ101πητ+3 in the ith
prediction and that a 1 was predicted in one of the previous i−1 predictions. Clearly,
Ai = GA

i + RA
i , and RA

1 = 0. The quantities GB
i , R

B
i , G

C
i , R

C
i , G

D
i , R

D
i are defined

similarly. We now show the following two facts:
Fact 1. GA

i −GD
i ≥ GC

i −GB
i for 1 ≤ i ≤ k;

Fact 2. (GA
i −GD

i ) + (RA
i+1−RD

i+1) = 0 and (GC
i −GB

i ) + (RC
i+1−RB

i+1) = 0 for
1 ≤ i ≤ k − 1.



OPTIMAL PREDICTION FOR PREFETCHING 1625

Facts 1 and 2 say intuitively that the good parts of the ith prediction maintain
the relationship that we want. The bad parts of the ith prediction exactly cancel the
gain from the good parts of the (i − 1)st prediction. The lemma follows from the
above two facts as follows:

A−D =
∑

1≤i≤k
Ai −Di =

∑
1≤i≤k

(GA
i −GD

i ) + (RA
i −RD

i ) = GA
k −GD

k

by repeated application of Fact 2. Similarly, C−B = GC
k −GB

k . By Fact 1, GA
k −GD

k ≥
GC
k −GB

k , which implies A−D ≥ C −B.
We now prove Facts 1 and 2 by induction. Since πτ1 is an r-subsequence, at each

time step, algorithm P1 boosts frequencies by the same exponent rt; for convenience,
we denote this exponent by r. Let d =

∑α−1
0 (fi)

r, d1 = d − (f1)
r + (f1 + 1)r, and

d0 = d− (f0)
r + (f0 + 1)r. These quantities are involved in the denominators of the

rational expressions for the predictions. Let uAi = uAi (x1, . . . , xi−1) be the term in
GA
i that corresponds to predicting x1, . . . , xi−1, none of them a 0 or a 1 as the first

i−1 predictions and 0 as the ith prediction. (The order of the first i−1 predictions is
important. For example, when i = 3, the probability of predicting a 0 following x1, x2

is different from the probability of predicting a 0 following x2, x1.) The quantities
uBi , u

C
i , u

D
i are defined similarly. The expressions in Fact 1 can be expressed in terms

of the u’s; for example,

GA
i −GD

i =
∑

x1,...,xi−1

distinct, 6= 0, 1

uAi − uDi .

Let vAi = vAi (x1, x2, . . . , xi−2) be the term in RA
i that corresponds to predicting

a 0 in the ith prediction with a 1 as one of the first i − 1 predictions and the other
i − 2 predictions being x1, . . . , xi−2, none of them a 0 or a 1. (The order of these
i − 2 predictions is important, as it is with ui, but the relative point at which the 1
is predicted is arbitrary. In effect, vAi is the sum of i− 1 probability terms, where the
i−1 terms correspond to the i−1 positions that the “1” is predicted.) The quantities
vBi , v

C
i , v

D
i are defined similarly. The expressions in Fact 2 can be expressed in terms

of the u’s and the v’s; for example,

(GA
i −GD

i ) + (RA
i+1 −RD

i+1) =
∑

x1,...,xi−1

distinct, 6= 0, 1

(uAi − uDi ) + (vAi+1 − vDi+1).

Let den(d, 0) = d, and let den(d, i − 1) = d − (fx1
)r − · · · − (fxi−1

)r for i ≥ 2. Let
πden(d, i− 1) for i ≥ 2 be the (i− 1)-term falling product d× (d− (fx1

)r)× · · ·× (d−
(fx1

)r − · · · − (fxi−2
)r) = Πi−1

j=1den(d, j − 1).

Proof of Fact 1. It suffices to show by induction that uAi −uDi ≥ uCi −uBi . For the
base case when i = 1, uA1 −uD1 = (f0)

r/d−(f0)
r/d1, and uC1 −uD1 = (f1)

r/d−(f1)
r/d0.

Hence

uA1 − uD1
uC1 − uB1

=
(f0)

r

(f1)r
× (f1 + 1)r − (f1)

r

(f0 + 1)r − (f0)r
× d0

d1
=

(1 + 1/f1)
r − 1

(1 + 1/f0)r − 1
× d0

d1
.(7)

Since the function g(x) = xr is convex and f0 ≥ f1, the above quantity is at least 1.
From the induction hypothesis that uAi−1 − uDi−1 ≥ uCi−1 − uBi−1 we get



1626 P. KRISHNAN AND JEFFREY SCOTT VITTER

(fx1
fx2

· · · fxi−2
f0)

r

(
1

πden(d, i− 1)
− 1

πden(d1, i− 1)

)
≥ (fx1

fx2
· · · fxi−2

f1)
r

(
1

πden(d, i− 1)
− 1

πden(d0, i− 1)

)
.(8)

As in (7), since g(x) = xr is convex, and f0 ≥ f1, we have

(f0)
r

(f1)r
× d1 − d

d0 − d
× πden(d0, i− 1)

πden(d1, i− 1)
× den(d0, i− 1)

den(d1, i− 1)
≥ 0.

It follows that

(fx1
fx2

· · · fxi−1
f0)

r

πden(d1, i− 1)

(
1

den(d, i− 1)
− 1

den(d1, i− 1)

)
≥ (fx1fx2 · · · fxi−1f1)

r

πden(d0, i− 1)

(
1

den(d, i− 1)
− 1

den(d0, i− 1)

)
.(9)

Multiplying (8) by (fxi−1)
r/den(d, i−1) and adding to (9) gives us uAi −uDi ≥ uCi −uBi .

Proof of Fact 2. To prove that (GA
i − GD

i ) + (RA
i+1 − RD

i+1) = 0, it suffices to
show that (uAi − uDi ) + (vAi+1 − vDi+1) = 0. For the base case when i = 1, uA1 − uD1 =
(f0)

r(1/d− 1/d1), and

vA2 − vD2 =
(f1)

r(f0)
r

d(d− (f1)r)
− (f1 + 1)r(f0)

r

d1(d1 − (f1 + 1)r)
.

Using the fact that d1 = d + (f1 + 1)r − (f1)
r, it follows from simple algebra that

vA2 − vD2 + (uA1 − uD1 ) = 0.
For the inductive step, recall that vAi+1 is a sum of i probability terms, where the i

terms correspond to the i positions that the “1” is predicted. (The terms are each
rational expressions with different denominators.) In particular, vAi+1 equals

(fx1
fx2

· · · fxi−1
f0f1)

r

den(d, i− 1)− (f1)r

(
1

πden(d, i)
+

1

den(d, i− 2)− (f1)r

(
1

πden(d, i− 1)
+ · · ·

))
,

which can be simplified to

vAi+1 =
(fx1

fx2
· · · f0f1)

r

den(d, i− 1)− (f1)r

(
1

πden(d, i)
+

vAi
(fx1fx2 · · · fxi−2f0f1)r

)
.

Since d1 − (f1 + 1)r = d− (f1)
r, we find that vAi+1 − vDi+1 equals

(fx1fx2 · · · fxi−1f0)
r

den(d, i− 1)− (f1)r

(
(f1)

r

πden(d, i)
− (f1 + 1)r

πden(d1, i)
+

vAi − vDi
(fx1fx2 · · · fxi−2f0)r

)
.(10)

By the induction hypothesis, vAi −vDi = −(uAi−1−uDi−1). The value for uAi−1−uDi−1

is the expression on the left-hand side of (8). Substituting for uAi−1 − uDi−1 in (10) we
get

vAi+1 − vDi+1 =
(fx1fx2 · · · fxi−1f0)

r

d− (fx1)
r − · · · − (fxi−1)

r − (f1)r
× U,(11)

where

U =
(f1)

r

πden(d, i)
− (f1 + 1)r

πden(d1, i)
− 1

πden(d, i− 1)
+

1

πden(d1, i− 1)
.



OPTIMAL PREDICTION FOR PREFETCHING 1627

The quantity uAi − uDi can be expressed as

uAi − uDi = (fx1
fx2

· · · fxi−1
f0)

r

(
1

πden(d, i)
− 1

πden(d1, i)

)
.

Adding the above expression to (11) and simplifying we find that (uAi −uDi )+(vAi+1−
vDi+1) = 0. A similar analysis shows that (GC

i −GB
i ) + (RC

i+1 −RB
i+1) = 0.

4.2. FaultP1(σ̃
n
1 ) is close to FaultF(1)(σ

n
1 ). In this subsection we prove The-

orem 5. Let F1 ∈ F(1) be the best one-state prefetcher for σn1 . Let F j
1 ∈ F(1) be the

best one-state prefetcher tuned for the jth r-subsequence σj . Let NumFaultsB(σba)
be the number of faults incurred by algorithm B on subsequence σba.

It is clear by definition that prefetcher F j
1 incurs at most as many faults on σj as

F1 incurs on σj . In other words,

NumFaultsF1
(σ̂j) = NumFaultsF1

(σj) ≥ NumFaultsF j
1
(σj) = NumFaultsF j

1
(σ̂j).(12)

Equation (12) directly implies the following lemma.
Lemma 2. The fault rate incurred for σn1 by using prefetcher F j

1 to prefetch for
the jth r-subsequence σj, for each j ≥ 0, is no greater than FaultF(1)(σ

n
1 ). That is,

FaultF(1)(σ
n
1 ) = FaultF(1)(σ̃

n
1 ) =

NumFaultsF1
(σ̂n1 )

n
≥
∑

j≥0 NumFaultsF j
1
(σ̂j)

n
.

The above lemma is useful since it is easier to compare algorithm P1 with algo-
rithm F j

1 on page request sequence σ̂j than it is to compare P1 with F1.
Lemma 3. The number of faults that algorithm P1 incurs on σ̂j is close to the

number of faults of the optimal one-state machine tuned for σ̂j. In particular,

NumFaultsP1
(σ̂j)−NumFaultsF j

i
(σ̂j) = O((αk2)j2j).

From Lemmas 2 and 3 we get

FaultP1
(σ̃n1 )− FaultF(1)(σ̃

n
1 ) ≤

∑
j

NumFaultsP1(σ̂j)−NumFaultsF j
1
(σ̃j)

n

= O

(
αk2

∑
j j2

j

n

)

= O

(
αk2 log n√

n

)
.(13)

Theorem 5 follows from (13) and the observation following Definition 5.
We now give the proof of Lemma 3.
Proof of Lemma 3. For simplicity, we denote by πη1 the balanced jth r-subsequence

σ̂j , where η = 4j − 4j−1 is the length of σ̂j . Divide πη1 into α subsequences π0, π1, . . . ,
πα−1, where exactly α − i different pages appear in πi. (Some of the πi’s may be
empty. Notice that since πη1 is balanced, each πi has the same number of occurrences
of each of the α − i pages in it.) We explicitly compute the difference between the
expected number of faults of P1 and the number of faults of F j

1 for each subsequence
πi. We need to be careful with the asymptotics involved, since the counts for the



1628 P. KRISHNAN AND JEFFREY SCOTT VITTER

pages are small in the earlier part of πη1 , but rt = O(
√
η ) is relatively larger. For

simplicity, we drop the subscript t from rt in the following discussion; recall that rt
does not change in an r-subsequence.

Let |πi| be the length of subsequence πi. Algorithm F j
1 incurs |πi| ×max{0, 1 −

k/(α− i)} faults on πi. Define Li as

Li =


|π0|
α

+
|π1|
α− 1

+ · · ·+ |πi−1|
α− (i− 1)

if i ≥ 1,

0 if i = 0.

The quantity Li tracks the number of times a page that appears in πi has already
appeared in π0, π1, . . . , πi−1. The expected number of faults incurred by algorithm
P1 on πi is

NumFaultsP1
(πi) = |πi| −

|πi|/(α−i)∑
u=1

α−i−1∑
v=0

k∑
k1=1

Pr(u, v, k1),(14)

where Pr(u, v, k1) is the probability of predicting the ((u − 1) × (α − i) + v + 1)st
page request of πi in the k1th prediction. For notational simplicity, let t = (u− 1)×
(α− i) + v + 1. Clearly, the tth page has appeared Li + u− 1 times in πt−1

1 , and no
page in πi has appeared more than Li + u times in πt−1

1 . Since we require an upper
bound on NumFaultsP1(πi), we determine a lower bound for Pr(u, v, k1) as follows.
We only consider k1 ≤ α− i, and we only consider that subset of events when pages
with count greater than or equal to that of the tth page (i.e., pages appearing in πi)
were predicted in the previous k1 − 1 predictions. Hence

Pr(u, v, k1) ≥ (k1 − 1)!

(
α− i− 1
k1 − 1

) k1−1∏
w=0

(Li + u− 1)r

(α− i− w)(Li + u)r +
∑i−1

q=0(Lq+1)r
.

Notice that multiplying by (k1− 1)! in the above equation is essential, since the order
of the first (k1 − 1) predictions is significant. We get

Pr(u, v, k1) ≥ (α− i− 1)k1−1
k1−1∏
w=0

(Li + u− 1)r

(α− i− w)(Li + u)r +
∑i−1

q=0(Lq+1)r
,(15)

where the expression xy stands for the “falling power” x× (x− 1)× · · · × (x− y+ 1).
In our following analysis, the important intuition is that asymptotically Li + u−

1 ≈ Li + u, but (Li)
r � (Li + u)r. Replacing

∑i−1
q=0(Lq+1)

r by i(Li)
r, we get

Pr(u, v, k1) ≥ (α− i− 1)k1−1
k1−1∏
w=0

(Li + u− 1)r

(α− i− w)(Li + u)r + i(Li)r
.(16)

Adding and subtracting (Li + u)r to the numerator in (16) and simplifying, we get

Pr(u, v, k1) ≥ (α− i− 1)k1−1

(
k1−1∏
w=0

(Li + u)r

(α− i− w)(Li + u)r + i(Li)r
− δ1(u, i)

α− i− w

)
,(17)

where δ1(u, i) = ((Li + u)r − (Li + u− 1)r)/(Li + u)r.Adding and subtracting (i/α−
i− w)× (Li)

r to the numerator of the first rational term in (17) and simplifying, we
get

Pr(u, v, k1) ≥ (α− i− 1)k1−1

(α− i)k1
(1− (δ1(u, i) + δ2(u, i)))

k1 ,(18)



OPTIMAL PREDICTION FOR PREFETCHING 1629

where δ2(u, i) = i(Li)
r/(Li + u)r. With the expression for Pr(u, v, k1) from (18)

it is easy to verify that the leading term of NumFaultsP1
(πi) is |πi| × max{0, 1 −

k/(α − i)}, which is the number of faults incurred by F j
1 on πi. The error term

ε = NumFaultsP1(πi)−NumFaultsF j
1
(πi) equals

1

α− i

|πi|/(α−i)∑
u=1

α−i−1∑
v=0

k∑
k1=1

ε(u, i, k1),(19)

where

ε(u, i, k1) = 1− (1− δ1(u, i)− δ2(u, i))
k1 .

The following facts can be verified by using the asymptotic techniques from [15, Chap-
ter 9]:

1. δ1(u, i) ≤ r/(Li + u− 1) if Li + u− 1 ≥ r;
2. δ2(u, i) ≤ i× exp(−ru/2Li) if u ≤ Li, and δ2(u, i) ≤ i2−r if u ≥ Li.

The lower-order terms arising from the binomial expansion of (1−(δ1(u, i)+δ2(u, i))
k1

from (19) (i.e., terms of degree 2 or greater) can be disregarded if Li + u − 1 ≥ kr
and u ≥ √

3η log(αk). When Li + u − 1 < kr or u <
√

3η log(αk), we can bound
ε(u, i, k1) by 1; the net contribution of this to ε is O(αr ln(αk)). Disregarding lower-
order terms in (19) and using the expressions from Facts 1 and 2 above, we get
ε = O(αk2r ln η + αk2η/r) = O(αk2

√
η log η) = O(αk2j2j).

5. Generalizing P1 to get P . In this section we prove Theorem 2 by construct-
ing our optimal prefetcher P . The prefetcher P is a mix of P1 and the character-based
version of the Lempel–Ziv algorithm for data compression. The original Lempel–Ziv
algorithm is a word-based data compression algorithm that parses the input string xn1
into distinct substrings x0, x1, x2, . . ., xc such that, for all j ≥ 1, substring xj with-
out its last character is equal to some xi for 0 ≤ i < j. (We use the convention that
x0 = λ, the empty substring.) It encodes the string one substring at a time. Since the
substrings are prefix-closed, they can be represented by a dynamically growing tree T
(the “LZ tree”), with the nodes of the tree representing the substrings and node xi
being an ancestor of node xj if substring xi is a prefix of substring xj ; λ is the root
of the tree. An example of the LZ tree is given in Figure 1a.

Let x(z) be the sequence of pages seen until now by P when at state z. At the
end of a parse, prefetcher P positions itself at the root of the LZ tree. It looks at the
subsequence x(z) at its current state z and simulates P1 on x(z) to prefetch for the
next page. (Algorithm P1 breaks x(z) into r-subsequences and prefetches based on the
current r-subsequence at state z as described in section 3. Note that P1 does not have
to maintain x(z) explicitly; it only has to maintain counts for the different pages.) On
observing the next page request j, it updates x(z), moves down the transition labeled
by j, and prefetches the next page similarly by simulating P1 on the sequence of
pages seen at the new current state. On reaching a leaf state, it prefetches k pages at
random, and the next request ends a parse. The important point is that although the
counts for some or all of the transitions can be 0 (since algorithm P1 resets the counts
for all pages to 0 at the beginning of an r-subsequence), the transitions themselves
are retained in the tree. An example snapshot of the data structure of P is given in
Figure 1b.

We now briefly explain why P is optimal against an arbitrary s-state machine
(Theorem 2) using the interesting approach of [12]. An mth-order Markov prefetcher



1630 P. KRISHNAN AND JEFFREY SCOTT VITTER

Fig. 1. Snapshot of data structure for algorithm P . Assume for simplicity that our alphabet is
{0, 1}. We consider the page request sequence xt

1 = “00001010011110 . . ..” The Ziv–Lempel encoder
parses this string as “(0)(00)(01)(010)(011)(1)(10) . . ..” The tree T that is built at the end of the
seventh parse is pictured above in (a). In (b), next to each node/state z of the tree we give the
sequence of page requests x(z) seen at that state. For example, for any page request sequence xt

1 that
is parsed by the Lempel–Ziv data compressor into distinct substrings λ, x1, x2, . . ., xc, the first page
of each substring xi, 1 ≤ i ≤ c, forms x(λ), the sequence of pages requested when the current state
is the root of the tree. In (b), x(λ) = 0000011. The dotted vertical lines in the sequences delimit
the r-subsequences, and the underlined portion is the current r-subsequence. The counts (given in
italics) on the transitions out of each state z are the counts obtained by simulating P1 on x(z).

predicts its k choices for the next page based solely on the previous m page requests
of the sequence. In particular, an mth-order prefetcher can be described by an FSP
having αm states, where each state is labeled by an m-page context (denoting the
last m pages requested), and the transitions denote the unique change from one m-
context to the next. The pages to prefetch are determined solely by the state that the
mth-order Markov prefetcher is in, which is equivalent to the most recent m pages
requested. The basic idea of the proof is to compare both prefetcher P and the best
s-state prefetcher with mth-order Markov prefetchers.

If we let m be large, an mth-order Markov prefetcher achieves, for every se-
quence σn1 and any s, a fault rate close to the fault rate of the best s-state prefetcher.
In particular, by simple extensions to [12, Theorem 2] as shown in Appendix B, we
see that

FaultM(αm)(σ
n
1 ) ≤ FaultF(s)(σ

n
1 ) +O

(√
log s

m+ 1

)
.(20)

The idea of the proof in [12] is to consider a “cross-product” machine of the mth-
order Markov predictor and the s state prefetcher and to show that the cross-product
machine is not much better than either of its constituents.

The prefetcher P can be looked upon as a Markov prefetcher of growing order.
In particular, most nodes in the tree T built by P (i.e., nodes below a depth of m)
have a context of length greater than m. Hence one would intuitively expect that
in the limit as n → ∞, prefetcher P will “beat” any mth-order Markov predictor.
Theorem 1 can be applied to each node of T , and by carefully summing the errors



OPTIMAL PREDICTION FOR PREFETCHING 1631

over each node we get

FaultP (σn1 ) ≤ FaultM(αm)(σ
n
1 ) + δ(n,m),(21)

where for a fixed m, δ(n,m) = O((log logn)/
√

log n ). This idea was used in [12,
Theorem 4] for a binary alphabet, and the simple changes required to obtain (21) are
summarized in Appendix B. Theorem 2 follows from (20) and (21).

Given that P1 is optimal against F(1) (Theorem 1), in order to show optimality
of P against F(s) by the approach described above, we need to extend some results
of [12] to hold for the prefetching problem. These extensions are simple as described
in Appendix B. The intuition for why these extensions are simple is because the
comparisons are primarily between two “offline” algorithms, and the online algorithm
is not much involved, as opposed to the more complex analysis of section 4.

6. Constant-time prediction. In this section we prove Theorem 3 by showing
that our prefetcher P runs in constant time (independent of α, k) on the average for
each of the pages it prefetches into cache.

In section 5, we showed that it suffices to consider one-state prefetchers; the
prefetcher at each step uses the appropriate P1 to generate random variates according
to a dynamically changing set of weights. We showed earlier that P1’s prediction
strategy is optimal, in which we successively pick a page at random (without replace-
ment) with probabilities in proportion to the boosted frequency counts (f0)

r, (f1)
r,

. . . , (fα−1)
r, where r ≈ √t. (Actually, we use r = 2j , where 4j−1 < t ≤ 4j , so that r

seldom changes. The frequency counts fi are reset to zero when r changes.)
The general problem of generating a random variate with a value in the range

{0, 1, 2, . . . , α − 1} and distributed according to α dynamically changing weights
w0, w1, w2, . . . , wα−1 is solved optimally by Matias, Vitter, and Ni [26, section 5].
The idea at an intuitive level is to group the weights into ranges according to their
values. Range j stores weights in the range [2j , 2j+1). Each range is said to have
a weight equal to the sum of the weights it contains. With high probability, the
individual weight chosen during the generation will be within the first O(logα) ranges,
so each successive group of O(logα) ranges should be processed in a recursive data
structure according to the weights of the ranges. The use of the rejection method [21]
is used to adjust the probabilities of generation appropriately, since the weights in
each bucket may vary by a factor of 2. After two recursive levels, the problem reduces
to generating one of O(log logα) weights, each in the range [1, logα], which can be
done dynamically in constant time by the clever table lookup method of Hagerup,
Mehlhorn, and Munro [16].

There is also extensive concern in [26] about the choice of hashing parameters in
the universal hashing schemes used to get linear space, since no a priori bound on the
key values is known. (In fact, a constant-time solution to the general dictionary prob-
lem is proposed in [26].) The model of computation allows arithmetic computation
and truncated logarithms of quantities up to value O(W ), where W is the maximum
weight.

In our application, the computation assumption of [26] is unreasonable, since it
allows constant-time operations on arbitrary numbers of bits. We make the stronger
requirement often used in algorithm design that the standard arithmetic operations
(such as addition, multiplication, division, and using exponents and logarithms) take
constant time with finite-precision quantities of O(log n) bits, where n is the length
of the sequence of page requests. However, the boosted frequencies wi = (fi)

r used
in the random variate generation can be as large as n

√
n in value, which cannot be



1632 P. KRISHNAN AND JEFFREY SCOTT VITTER

manipulated efficiently. Fortunately we can get around the precision problem by
approximating wi by 2dr lg fie. The first level of the algorithm in [26] is applied to
these approximated weights, using arithmetic on the exponents, which involves only
O(log n) bits. For example, we can determine the bucket j that contains 2dr lg fie in
constant time using operations on O(log n) bits by noting that j can be represented
with only about lg lg((fi)

r) = lg r+lg lg fi ≤ 2 lg n bits. The range j can be computed,
therefore, in constant time using O(log n)-bit arithmetic. The resulting recursive
subproblems have polynomial-sized weights, and the rest of the construction continues
as in [26].

Because of the initial approximation, if the “approximated” page i is selected for
generation, a final acceptance–rejection test must be done before actually choosing
page i; the acceptance probability is (fi)

r/2dr lg fie, which is at least 1/2. This test can
be done conceptually by generating a uniform random integer U in the range [1, 2j+1)
and testing if U ≤ (fi)

r, but handling quantities of that magnitude is infeasible,
as mentioned above. It suffices to determine if lgU ≤ r lg fi, which can be done
in constant time using finite precision by generating the exponentially distributed
random variate lgU directly [21, p. 128]. The expected number of steps needed
before the acceptance or rejection is determined is a small constant, so finite precision
suffices. This completes the proof of Theorem 3.

7. Conclusions. We have studied the problem of prediction of sequences (of
pages requests, for example) drawn from a finite but arbitrary alphabet of cardi-
nality α, in which we can make, at each time step, k predictions for the next item
(page). This corresponds to the problem of pure prefetching in databases. We have
developed a simple randomized weighting algorithm P1 and have combined it with
the Lempel–Ziv data compressor to get an efficient prefetcher P . We have shown an-
alytically that P ’s fault rate converges almost surely to that of the best FSP for every
(worst-case) sequence of page requests. It has been shown in [7] that any optimal
algorithm for the binary alphabet case has to be necessarily randomized. Because of
the way our algorithm is designed, we need to spend at most constant expected time
making the random choices for each prediction, which is optimal. Thus the algorithm
is simultaneously optimal with respect to fault rate and running time.

An open problem is to study if there are stronger analysis models closer to the
competitive model that would permit prediction problems such as prefetching to be
studied. It would also be interesting to improve the convergence bounds while main-
taining optimal running time.

We have also investigated nonpure prefetching in [10, 35], in which there may not
always be enough time to load the cache with k pages before the user issues the next
page request, and prefetching requests may have to be done in advance. We have
also described therein a nice way of gathering the statistics with no I/O overhead.
The resulting prefetcher is practical in terms of time, disk accesses, and fault rate
and outperforms other known prefetchers. We also expect that our results apply
to prefetchers based on data compression methods other than Lempel–Ziv that are
optimal in various models.

Appendix A. Nonoptimal prefetchers. In section A.1 we give a simple ex-
ample which illustrates that no deterministic algorithm can be optimal for prefetching
in the worst case. In section A.2, we show that the Proportional algorithm, which
at time t prefetches page i with probability proportional to fi(σ

t
1), where fi(σ

t
1), for

0 ≤ i ≤ α − 1, denotes the number of times page i appears in σt1, is not optimal.



OPTIMAL PREDICTION FOR PREFETCHING 1633

For both proofs of nonoptimality, we develop a page request sequence with alpha-
bet A = {0, 1}, cache size k = 1, and compare it with the best 1-state prefetcher.

From an intuitive standpoint, algorithm Proportional is too conservative, while
deterministic algorithms are “too naive” and hence susceptible to worst-case-type
adversaries (like FSPs). Algorithm P1, by choosing the high probability pages with
very high likelihood, closely tracks the optimal. The tricky issues are proving the
optimality of P1 and making predictions in a computationally efficient fashion.

A.1. Deterministic algorithms. It is easy to see that the fault rate of an
optimal 1-state prefetcher for any sequence with α = 2 and k = 1 is at most 1/2,
since it predicts at each time instant the overall most frequent page. We can make a
deterministic algorithm fault at every page request by creating a sequence such that
the next page request is for the page not in cache.

A.2. Algorithm Proportional. Consider the page request sequence

σn1 = 01010101 . . . 010000 . . . 00,

where the first “0101. . .” subsequence is of length n/2, and it is followed by n/2 0’s.
The fault rate of the optimal 1-state prefetcher (which always predicts “0” to be
the next page request) is 1/4. Algorithm Proportional is expected to incur at least
1/2×n/2 faults in the first n/2 page requests. Since the proportion of 0’s in the entire
sequence is 3/4, algorithm Proportional incurs, on the average, more than 1/4× n/2
faults for the last n/2 page requests. This implies a net average fault rate of more
than 3/8, which is clearly suboptimal.

Appendix B. Proof of Theorem 2. In this section we continue the discussion
from section 5 and present the required extensions to the results of [12] in order to
prove optimality of prefetcher P . (Recall that [12] deals with the binary alphabet case,
which corresponds to α = 2, k = 1.) The main objective of this section is to show the
necessary extensions required to prove (20) and (21) (which are the counterparts for
Theorems 2 and 4 from [12]).

We start with a definition of mth-order Markov prefetchers.
Definition 6. An mth-order Markov prefetcher prefetches for its next page based

solely on the previous m page requests of the sequence. Using the notation from Defini-
tion 1, an mth-order Markov prefetcher has αm states, where each state is (represents)
an m-context (x1, x2, . . . , xm), and g((x1, . . . , xm), u) = (x2, . . . , xm, u). We denote
the fault rate of an mth-order prefetcher by FaultM(αm)(σ

n
1 ), where M(αm) ⊆ F(αm).

We also introduce notation to help describe faults easily.
Definition 7. Given an α-probability vector ~p = (p0, . . . , pα−1), we denote by

minα−k(~p) the sum of the minimum α− k elements of ~p. In other words if p0 ≥ p1 ≥
· · · ≥ pα−1, then minα−k(~p) =

∑α−1
i=k pi.

Proving (20) is equivalent to showing that Theorem 2 from [12] holds for prefetch-
ing. As mentioned in section 5, the proof of [12, Theorem 2] is based on comparing
the s-state prefetcher and the mth-order Markov prefetcher with a cross product of
these two machines.1 Theorem 2 of [12] is strongly dependent on [12, Lemma 1],
where the mth-order Markov machine is compared with the cross-product machine.
The basic idea of [12, Lemma 1] is to bound prediction error by a function of the

1The term “cross product” is taken from [36], where a similar product of two machines was used
to prove the optimality of prefetchers under a Markov source model.



1634 P. KRISHNAN AND JEFFREY SCOTT VITTER

empirical entropies, and it is based on the following fact: for every 0 ≤ p, q ≤ 1,

p log
p

q
+ (1− p) log

1− p

1− q
≥ 2

ln 2
(min{p, 1− p} −min{q, 1− q})2 .(22)

It is not hard to see that the left-hand side of (22) is closely related to the entropy
and the right-hand side of (22) to the prediction error. (The idea of bounding error
for prefetching by bounding coding length differences was used independently in [36]
to derive optimal prefetchers from data compressors under a Markov source input
model.) A fact equivalent to (22) that we prove for our prefetching problem (via
Lemmas 4 and 5 below) is the following: given two probability vectors ~p and ~q,

α∑
1

pi ln
pi
qi
≥ 1

2

(
min
α−k

(~p)−min
α−k

(~q)

)2

.(23)

The proof of [12, Lemma 1] follows from (22), Jensen’s inequality, and the convexity of
the square function. The proof of [12, Theorem 2] follows from [12, Lemma 1], Jensen’s
inequality, the concavity of the square root function, and the chain rule of conditional
entropies. Except for (22), the other aspects of the proof of [12, Theorem 2] are
effectively independent of the alphabet and cache size. To derive (20), we consider
the proof of [12, Theorem 2] and uniformly replace min{p0, p1}, where p0 and p1

are the probabilities of a 0 and a 1, by minα−k(~p), where ~p is the corresponding α-
probability vector for prefetching, replace summations over {0, 1} by summations over
the alphabet A, and use (23) in place of (22).

We now prove (23) using the following two lemmas.
Lemma 4. Given two α-probability vectors ~p and ~q, we have

min
α−k

(~p)−min
α−k

(~q) ≤
α−1∑
i=0

|pi − qi|.

Proof. Without loss of generality assume p0 ≥ p1 ≥ · · · ≥ pα−1. Let X =
{0, 1, . . . , k− 1}, and let Y = {k, k+ 1, . . . , α− 1}. Hence minα−k(~p) =

∑
i∈Y pi. Let

Z = {i1, i2, . . . , iα−k} be the α− k pages with minimum count in ~q. Let U = Z ∩ Y ,
and V = Z ∩X. By definition, minα−k(~p)−minα−k(~q) =

∑
i∈Y pi −

∑
i∈Z qi. Since

by assumption p0 ≥ p1 ≥ · · · ≥ pα−1, we have

min
α−k

(~p)−min
α−k

(~q) ≤
∑
i∈U

(pi − qi) +
∑
i∈V

(pi − qi) ≤
∑
i∈A

|pi − qi|,

where A is the alphabet as given in Definition 1.
The next lemma is well known; the proof can be found in [2, 36]. The summation

on the right-hand side of the equation in the lemma is the Kullback–Leibler divergence
of ~q w.r.t. ~p.

Lemma 5. Given two probability vectors (p0, . . . , pα−1) and (q0, . . . , qα−1), we
have (

α∑
i=0

|pi − qi|
)2

≤ 2
α∑
i=1

pi ln
pi
qi
.

To verify (21) (i.e., the equivalent of [12, Theorem 4] for prefetching), the proof
technique presented in [12] carries over with virtually no change; we need to use



OPTIMAL PREDICTION FOR PREFETCHING 1635

Theorem 1 of our paper in place of [12, Theorem 1]. (As done earlier, we do need
to uniformly replace min{p0, p1} by minα−k(~p) and replace summations over {0, 1}
by summations over the alphabet A.) The basic idea of the proof is to consider
separately each node of the tree T created by P , look at the faults for the pages
requested when at that node, and take the average of these individual faults weighted
by the number of times the node is visited. The main observation is that for most
nodes (i.e., nodes below a depth of m), there is a mapping from the nodes of T to
the states of the mth-order Markov prefetcher; hence bounding the error at each
node of T involves comparing with the best one-state prefetcher, which is done in
Theorem 1. Since there are at most c = O(n/ log n) nodes in T [37], and the
one-state error from Theorem 1 is O((log n)

√
n/n), the net error turns out to be

O((log(n/c))
√
n/c/(n/c)) = O((log logn)/

√
log n). (This is as opposed to the case

of α = 2, k = 1 studied in [12],where the one-state error is O(1/
√
n), yielding a net

error of O(1/
√

log n).)
This completes our description of the extensions to [12] required to prove Theo-

rem 2.

REFERENCES

[1] D. Aldous and U. Vazirani, A Markovian extension of Valiant’s learning model, in Proc. 31st
Annual IEEE Symposium on Foundations of Computer Science, October 1990, pp. 392–396.

[2] Y. Amit and M. Miller, Large Deviations for Coding Markov Chains and Gibbs Random
Fields, Technical Report, Washington University, St. Louis, MO, 1990.

[3] L. A. Belady, A study of replacement algorithms for virtual storage computers, IBM Systems
J., 5 (1966), pp. 78–101.

[4] D. Blackwell, An analog to the minimax theorem for vector payoffs, Pacific J. Math., 6
(1956), pp. 1–8.

[5] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality of
reference, in Proc. 23rd Annual ACM Symposium on Theory of Computation, May 1991.

[6] T. F. Chen and J. L. Baer, Reducing memory latency via non-blocking and prefetching
caches, in Proc. 5th Internat. Conf. on Architectural Support for Programming Languages
and Operating Systems, Department of Computer Science and Engineering, University of
Washington, Boston, MA, October 1992.

[7] T. M. Cover, Behavior of predictors of binary sequences, in Proc. 4th Prague Conference on
Information Theory, Statistical Decision Functions, Random Processes, Publishing House
of the Czechoslovak Academy of Sciences, Prague, 1967, pp. 263–272.

[8] T. M. Cover and A. Shenhar, Compound Bayes predictors with apparent Markov structure,
IEEE Trans. Systems Man Cybernet., V SMC-7 (1977), pp. 421–424.

[9] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York, 1991.
[10] K. Curewitz, P. Krishnan, and J. S. Vitter, Practical prefetching via data compression, in

Proc. 1993 ACM SIGMOD International Conference on Management of Data, May 1993,
pp. 257–266.

[11] P. J. Denning, Working sets past and present, IEEE Trans. Software Engrg., SE-6 (1980),
pp. 64–84.

[12] M. Feder, N. Merhav, and M. Gutman, Universal prediction of individual sequences, IEEE
Trans. Inform. Theory, IT-38 (1992), pp. 1258–1270.

[13] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young, On
competitive algorithms for paging problems, J. Algorithms, 12 (1991), pp. 685–699.

[14] R. G. Gallager, Information Theory and Reliable Communication, Wiley, New York, 1968.
[15] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison–Wesley,

Reading, MA, 1989.
[16] T. Hagerup, K. Mehlhorn, and I. Munro, Optimal algorithms for generating time vary-

ing discrete random variables, in Proc. of the 20th Annual International Coll. on Au-
tomata Languages and Prog., Lecture Notes in Comput. Sci. 700, Springer, New York,
1993, pp. 253–264.

[17] J. F. Hannan, Approximation to Bayes Risk in Repeated Plays, Contributions to the Theory
of Games, Vol. 3, Annals of Mathematical Studies, Princeton University Press, Princeton,
NJ, 1957, pp. 97–139.



1636 P. KRISHNAN AND JEFFREY SCOTT VITTER

[18] P. G. Howard and J. S. Vitter, Analysis of arithmetic coding for data compression, In-
vited paper in Special Issue on Data Compression for Images and Texts, Inform. Process.
Management, 28 (1992), pp. 749–763.

[19] S. Irani, A. R. Karlin, and S. Phillips, Strongly competitive algorithms for paging with
locality of reference, in Proc. 3rd Annual ACM-SIAM Symposium of Discrete Algorithms,
January 1992.

[20] A. R. Karlin, S. J. Phillips, and P. Raghavan, Markov paging, in Proc. 33rd Annual IEEE
Conference on Foundations of Computer Science, October 1992, pp. 208–217.

[21] D. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed.,
Addison-Wesley, Reading, MA, 1981.

[22] D. F. Kotz and C. S. Ellis, Prefetching in File Systems for MIMD Multiprocessors, IEEE
Transactions on Parallel and Distributed Systems, Vol. 1, April 1990, pp. 218–230.

[23] P. Krishnan and J. S. Vitter, Optimal Prediction for Prefetching in the Worst Case, Tech-
nical Report DUKE–CS–93–26, Duke University , Durham, NC, 1993.

[24] P. Laird, TDAG: An Algorithm for Learning to Predict Discrete Sequences, FIA-92-01, NASA
Ames Research Center, AI Research Branch, Moffet Field, CA, 1992.

[25] G. G. Langdon, A Note on the Ziv–Lempel Model for Compressing Individual Sequences,
IEEE Trans. Inform. Theory, Vol. 29, March 1983, pp. 284–287.

[26] Y. Matias, J. S. Vitter, and W. C. Ni, Dynamic generation of discrete random variates,
in Proc. 4th Annual SIAM/ACM Symposium on Discrete Algorithms, Austin, TX, Jan-
uary 1993, pp. 361–370.

[27] L. A. McGeoch and D. D. Sleator, A strongly competitive randomized paging algorithm,
Algorithmica, 6 (1991), pp. 816–825.

[28] N. Merhav and M. Feder, Universal Sequential Learning and Decision from Individual Data
Sequences, in Proc. 5th ACM Workshop on Computational Learning Theory, Santa Cruz,
July 1992.

[29] T. C. Mowry, M. S. Lam, and A. Gupta, Design and evaluation of a compiler algorithm
for prefetching, in Proc. 5th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems Computer Systems Laboratory, Boston, MA,
October 1992.

[30] M. Palmer and S. Zdonik, Fido: A cache that learns to fetch, in Proc. 1991 International
Conference on Very Large Databases, Barcelona, September 1991.

[31] A. Rogers and K. Li, Software support for speculative loads, in Proc. 5th International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
Department of Computer Science, Boston, MA, October 1992.

[32] K. Salem, Adaptive Prefetching for Disk Buffers, CESDIS, Goddard Space Flight Center,
Greenbelt, MD, TR–91–46, January 1991.

[33] G. S. Shedler and C. Tung, Locality in page reference strings, SIAM J. Comput., 1 (1972),
pp. 218–241.

[34] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Com-
munications of the ACM, 28 (1985), pp. 202–208.

[35] J. S. Vitter, K. Curewitz, and P. Krishnan, Online Background Predictors and Prefetchers,
Duke University, United States Patent No. 5,485,609, January 16, 1996.

[36] J. S. Vitter and P. Krishnan, Optimal prefetching via data compression, J. Assoc. Comput.
Mach., 143 (1996), pp. 771–793.

[37] J. Ziv and A. Lempel, Compression of individual sequences via variable-rate coding, IEEE
Trans. Inform. Theory, 24 (1978), pp. 530–536.


