10,332 research outputs found

    A Content-Analysis Approach for Exploring Usability Problems in a Collaborative Virtual Environment

    Get PDF
    As Virtual Reality (VR) products are becoming more widely available in the consumer market, improving the usability of these devices and environments is crucial. In this paper, we are going to introduce a framework for the usability evaluation of collaborative 3D virtual environments based on a large-scale usability study of a mixedmodality collaborative VR system. We first review previous literature about important usability issues related to collaborative 3D virtual environments, supplemented with our research in which we conducted 122 interviews after participants solved a collaborative virtual reality task. Then, building on the literature review and our results, we extend previous usability frameworks. We identified twelve different usability problems, and based on the causes of the problems, we grouped them into three main categories: VR environment-, device interaction-, and task-specific problems. The framework can be used to guide the usability evaluation of collaborative VR environments

    Designing multi-sensory displays for abstract data

    Get PDF
    The rapid increase in available information has lead to many attempts to automatically locate patterns in large, abstract, multi-attributed information spaces. These techniques are often called data mining and have met with varying degrees of success. An alternative approach to automatic pattern detection is to keep the user in the exploration loop by developing displays for perceptual data mining. This approach allows a domain expert to search the data for useful relationships and can be effective when automated rules are hard to define. However, designing models of the abstract data and defining appropriate displays are critical tasks in building a useful system. Designing displays of abstract data is especially difficult when multi-sensory interaction is considered. New technology, such as Virtual Environments, enables such multi-sensory interaction. For example, interfaces can be designed that immerse the user in a 3D space and provide visual, auditory and haptic (tactile) feedback. It has been a goal of Virtual Environments to use multi-sensory interaction in an attempt to increase the human-to-computer bandwidth. This approach may assist the user to understand large information spaces and find patterns in them. However, while the motivation is simple enough, actually designing appropriate mappings between the abstract information and the human sensory channels is quite difficult. Designing intuitive multi-sensory displays of abstract data is complex and needs to carefully consider human perceptual capabilities, yet we interact with the real world everyday in a multi-sensory way. Metaphors can describe mappings between the natural world and an abstract information space. This thesis develops a division of the multi-sensory design space called the MS-Taxonomy. The MS-Taxonomy provides a concept map of the design space based on temporal, spatial and direct metaphors. The detailed concepts within the taxonomy allow for discussion of low level design issues. Furthermore the concepts abstract to higher levels, allowing general design issues to be compared and discussed across the different senses. The MS-Taxonomy provides a categorisation of multi-sensory design options. However, to design effective multi-sensory displays requires more than a thorough understanding of design options. It is also useful to have guidelines to follow, and a process to describe the design steps. This thesis uses the structure of the MS-Taxonomy to develop the MS-Guidelines and the MS-Process. The MS-Guidelines capture design recommendations and the problems associated with different design choices. The MS-Process integrates the MS-Guidelines into a methodology for developing and evaluating multi-sensory displays. A detailed case study is used to validate the MS-Taxonomy, the MS-Guidelines and the MS-Process. The case study explores the design of multi-sensory displays within a domain where users wish to explore abstract data for patterns. This area is called Technical Analysis and involves the interpretation of patterns in stock market data. Following the MS-Process and using the MS-Guidelines some new multi-sensory displays are designed for pattern detection in stock market data. The outcome from the case study includes some novel haptic-visual and auditory-visual designs that are prototyped and evaluated

    Data mining technology for the evaluation of learning content interaction

    Get PDF
    Interactivity is central for the success of learning. In e-learning and other educational multimedia environments, the evaluation of interaction and behaviour is particularly crucial. Data mining – a non-intrusive, objective analysis technology – shall be proposed as the central evaluation technology for the analysis of the usage of computer-based educational environments and in particular of the interaction with educational content. Basic mining techniques are reviewed and their application in a Web-based third-level course environment is illustrated. Analytic models capturing interaction aspects from the application domain (learning) and the software infrastructure (interactive multimedia) are required for the meaningful interpretation of mining results

    Virtual transcendence experiences: Exploring technical and design challenges in multi-sensory environments

    Get PDF
    In this paper 1, we introduce the concept of Virtual Transcendence Experience (VTE) as a response to the interactions of several users sharing several immersive experiences through different media channels. For that, we review the current body of knowledge that has led to the development of a VTE system. This is followed by a discussion of current technical and design challenges that could support the implementation of this concept. This discussion has informed the VTE framework (VTEf), which integrates different layers of experiences, including the role of each user and the technical challenges involved. We conclude this paper with suggestions for two scenarios and recommendations for the implementation of a system that could support VTEs

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    MetaSpace II: Object and full-body tracking for interaction and navigation in social VR

    Full text link
    MetaSpace II (MS2) is a social Virtual Reality (VR) system where multiple users can not only see and hear but also interact with each other, grasp and manipulate objects, walk around in space, and get tactile feedback. MS2 allows walking in physical space by tracking each user's skeleton in real-time and allows users to feel by employing passive haptics i.e., when users touch or manipulate an object in the virtual world, they simultaneously also touch or manipulate a corresponding object in the physical world. To enable these elements in VR, MS2 creates a correspondence in spatial layout and object placement by building the virtual world on top of a 3D scan of the real world. Through the association between the real and virtual world, users are able to walk freely while wearing a head-mounted device, avoid obstacles like walls and furniture, and interact with people and objects. Most current virtual reality (VR) environments are designed for a single user experience where interactions with virtual objects are mediated by hand-held input devices or hand gestures. Additionally, users are only shown a representation of their hands in VR floating in front of the camera as seen from a first person perspective. We believe, representing each user as a full-body avatar that is controlled by natural movements of the person in the real world (see Figure 1d), can greatly enhance believability and a user's sense immersion in VR.Comment: 10 pages, 9 figures. Video: http://living.media.mit.edu/projects/metaspace-ii

    Language and science: products and processes of signification in the educational dialogue

    Get PDF
    Global changes such as urbanisation, new ways of travelling, new information and communication technologies are causing radical changes in the relationships between human beings and the environment we are both a part of and depend on. Relationships which – according to a multiplicity of researches in various fields – are crucially important. Science education and the language of science risk exacerbating a tendency towards objectifying nature and inhabiting a virtual reality, thereby rendering ever more tenuous the dialogue between people and the natural world. This article examines two approaches to science and language – as products or as processes – and suggests how awareness of the dynamic relationship between language and knowledge can help restore that vital dialogue

    Dataremix: Aesthetic Experiences of Big Data and Data Abstraction

    Get PDF
    This PhD by published work expands on the contribution to knowledge in two recent large-scale transdisciplinary artistic research projects: ATLAS in silico and INSTRUMENT | One Antarctic Night and their exhibited and published outputs. The thesis reflects upon this practice-based artistic research that interrogates data abstraction: the digitization, datafication and abstraction of culture and nature, as vast and abstract digital data. The research is situated in digital arts practices that engage a combination of big (scientific) data as artistic material, embodied interaction in virtual environments, and poetic recombination. A transdisciplinary and collaborative artistic practice, x-resonance, provides a framework for the hybrid processes, outcomes, and contributions to knowledge from the research. These are purposefully and productively situated at the objective | subjective interface, have potential to convey multiple meanings simultaneously to a variety of audiences and resist disciplinary definition. In the course of the research, a novel methodology emerges, dataremix, which is employed and iteratively evolved through artistic practice to address the research questions: 1) How can a visceral and poetic experience of data abstraction be created? and 2) How would one go about generating an artistically-informed (scientific) discovery? Several interconnected contributions to knowledge arise through the first research question: creation of representational elements for artistic visualization of big (scientific) data that includes four new forms (genomic calligraphy, algorithmic objects as natural specimens, scalable auditory data signatures, and signal objects); an aesthetic of slowness that contributes an extension to the operative forces in Jevbratt’s inverted sublime of looking down and in to also include looking fast and slow; an extension of Corby’s objective and subjective image consisting of “informational and aesthetic components” to novel virtual environments created from big 3 (scientific) data that extend Davies’ poetic virtual spatiality to poetic objective | subjective generative virtual spaces; and an extension of Seaman’s embodied interactive recombinant poetics through embodied interaction in virtual environments as a recapitulation of scientific (objective) and algorithmic processes through aesthetic (subjective) physical gestures. These contributions holistically combine in the artworks ATLAS in silico and INSTRUMENT | One Antarctic Night to create visceral poetic experiences of big data abstraction. Contributions to knowledge from the first research question develop artworks that are visceral and poetic experiences of data abstraction, and which manifest the objective | subjective through art. Contributions to knowledge from the second research question occur through the process of the artworks functioning as experimental systems in which experiments using analytical tools from the scientific domain are enacted within the process of creation of the artwork. The results are “returned” into the artwork. These contributions are: elucidating differences in DNA helix bending and curvature along regions of gene sequences specified as either introns or exons, revealing nuanced differences in BLAST results in relation to genomics sequence metadata, and cross-correlation of astronomical data to identify putative variable signals from astronomical objects for further scientific evaluation

    A Seeing Place – Connecting Physical and Virtual Spaces

    Get PDF
    In the experience and design of spaces today, we meet both reality and virtuality. But how is the relation between real and virtual construed? How can we as researchers and designers contribute to resolving the physical-virtual divide regarding spaces? This thesis explores the relations between the physical and the virtual and investigates ways of connecting physical and virtual space, both in theory and practice.\ua0The basic concepts of the thesis are Space, Place, and Stage. The central idea is that the stage is a strong conceptual metaphor that has the capacity to work as a unifying concept relating physical and virtual spaces and forming a place for attention, agreements, and experience – A Seeing Place. The concept of seeing place comes from the Greek word theatre, meaning a “place for seeing”, both in the sense of looking at and understanding.\ua0In certain situations, the relations between physical and virtual spaces become important for users’ experience and understanding of these situations. This thesis presents seven cases of physical-virtual spaces, in the field of architectural and exhibition design. The method of these studies is research by design. The discussion then focuses on how each setting works as a stage, and how conceptual metaphors can contribute to the connection between physical and virtual spaces.\ua0Building upon the explorations and experiments in different domains, the thesis contains a collection of seven papers concerning the relations between physical and virtual space in different contexts outside the world of theatre. These papers range from more technical about Virtual Reality (design of networked collaborative spaces) to more conceptual about staging (methods in interaction design) and virtual space (using a transdisciplinary approach).\ua0The results of those studies suggest that the Stage metaphor of a physical-virtual space can contribute to the elucidating of relations between physical and virtual spaces in number of ways. Conceptually, the stage metaphor links together the semiotic and the hermeneutic views of space and place. And, from a practice-based perspective, A Seeing Place view opens up the way to creating contemporary spaces and resolving the physical-virtual divide
    corecore