17,548 research outputs found

    Vector Positronium States in QED3

    Full text link
    The homogeneous Bethe-Salpeter equation is solved in the quenched ladder approximation for the vector positronium states of 4-component quantum electrodynamics in 2 space and 1 time dimensions. Fermion propagator input is from a Rainbow approximation Dyson-Schwinger solution, with a broad range of fermion masses considered. This work is an extension of earlier work on the scalar spectrum of the same model. The non-relativistic limit is also considered via the large fermion mass limit. Classification of states via their transformation properties under discrete parity transformations allows analogies to be drawn with the meson spectrum of QCD.Comment: 24 pages, 2 encapsulated postscript figure

    Interplay between electronic topology and crystal symmetry: Dislocation-line modes in topological band-insulators

    Get PDF
    We elucidate the general rule governing the response of dislocation lines in three-dimensional topological band insulators. According to this K-b-t{\bf K}\text{-}{\bf b}\text{-}{\bf t} rule, the lattice topology, represented by dislocation lines oriented in direction t{\bf t} with Burgers vector b{\bf b}, combines with the electronic-band topology, characterized by the band-inversion momentum Kinv{\bf K}_{\rm inv}, to produce gapless propagating modes when the plane orthogonal to the dislocation line features a band inversion with a nontrivial ensuing flux Φ=Kinv⋅b  (mod  2π)\Phi={\bf K}_{\rm inv}\cdot {\bf b}\,\, ({\rm mod\,\,2\pi}). Although it has already been discovered by Y. Ran {\it et al.}, Nature Phys. {\bf 5}, 298 (2009), that dislocation lines host propagating modes, the exact mechanism of their appearance in conjunction with the crystal symmetries of a topological state is provided by the K-b-t{\bf K}\text{-}{\bf b}\text{-}{\bf t} rule . Finally, we discuss possible experimentally consequential examples in which the modes are oblivious for the direction of propagation, such as the recently proposed topologically-insulating state in electron-doped BaBiO3_3.Comment: Main text + supplementary material, published versio

    Finite Grand Unified Theories and the Quark Mixing Matrix

    Get PDF
    In N = 1 super Yang-Mills theories, under certain conditions satisfied by the spectrum and the Yukawa couplings, the beta functions will vanish to all orders in perturbation theory. We address the generation of realistic quark mixing angles and masses in such finite Grand Unified Theories. Working in the context of finite SUSY SU(5), we present several examples with realistic quark mixing matrices. Non-Abelian discrete symmetries are found to be important in satisfying the conditions for finiteness. Our realistic examples are based on permutation symmetries and the tetrahedral symmetry A4A_4. These examples enable us to address questions such as the decay rate of the proton in finite GUTs.Comment: 16 pages, LaTeX, typos correcte

    Highly Frustrated Magnetic Clusters: The kagome on a sphere

    Get PDF
    We present a detailed study of the low-energy excitations of two existing finite-size realizations of the planar kagome Heisenberg antiferromagnet on the sphere, the cuboctahedron and the icosidodecahedron. After highlighting a number of special spectral features (such as the presence of low-lying singlets below the first triplet and the existence of localized magnons) we focus on two major issues. The first concerns the nature of the excitations above the plateau phase at 1/3 of the saturation magnetization Ms. Our exact diagonalizations for the s=1/2 icosidodecahedron reveal that the low-lying plateau states are adiabatically connected to the degenerate collinear ``up-up-down'' ground states of the Ising point, at the same time being well isolated from higher excitations. A complementary physical picture emerges from the derivation of an effective quantum dimer model which reveals the central role of the topology and the intrinsic spin s. We also give a prediction for the low energy excitations and thermodynamic properties of the spin s=5/2 icosidodecahedron Mo72Fe30. In the second part we focus on the low-energy spectra of the s>1/2 Heisenberg model in view of interpreting the broad inelastic neutron scattering response reported for Mo72Fe30. To this end we demonstrate the simultaneous presence of several broadened low-energy ``towers of states'' or ``rotational bands'' which arise from the large discrete spatial degeneracy of the classical ground states, a generic feature of highly frustrated clusters. This semiclassical interpretation is further corroborated by their striking symmetry pattern which is shown, by an independent group theoretical analysis, to be a characteristic fingerprint of the classical coplanar ground states.Comment: 22 pages Added references Corrected typo

    Symmetry-protected topological phases of alkaline-earth cold fermionic atoms in one dimension

    Full text link
    We investigate the existence of symmetry-protected topological phases in one-dimensional alkaline-earth cold fermionic atoms with general half-integer nuclear spin I at half filling. In this respect, some orbital degrees of freedom are required. They can be introduced by considering either the metastable excited state of alkaline-earth atoms or the p-band of the optical lattice. Using complementary techniques, we show that SU(2) Haldane topological phases are stabilised from these orbital degrees of freedom. On top of these phases, we find the emergence of topological phases with enlarged SU(2I+1) symmetry which depend only on the nuclear spin degrees of freedom. The main physical properties of the latter phases are further studied using a matrix-product state approach. On the one hand, we find that these phases are symmetry-protected topological phases, with respect to inversion symmetry, when I=1/2,5/2,9/2,..., which is directly relevant to ytterbium and strontium cold fermions. On the other hand, for the other values of I(=half-odd integer), these topological phases are stabilised only in the presence of exact SU(2I+1)-symmetry
    • …
    corecore