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Highly Frustrated Magnetic Clusters: The kagomé on a sphere
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We present a detailed study of the low-energy excitations of two existing finite-size realizations
of the planar kagomé Heisenberg antiferromagnet on the sphere, the cuboctahedron and the icosi-
dodecahedron. After highlighting a number of special spectral features (such as the presence of
low-lying singlets below the first triplet and the existence of localized magnons) we focus on two
major issues. The first concerns the nature of the excitations above the plateau phase at 1/3 of the
saturation magnetization Ms. Our exact diagonalizations for the s = 1/2 icosidodecahedron reveal
that the low-lying plateau states are adiabatically connected to the degenerate collinear “up-up-
down” ground states of the Ising point, at the same time being well isolated from higher excitations.
A complementary physical picture emerges from the derivation of an effective quantum dimer model
which reveals the central role of the topology and the intrinsic spin s. We also give a prediction
for the low energy excitations and thermodynamic properties of the spin s = 5/2 icosidodecahe-
dron Mo72Fe30. In the second part we focus on the low-energy spectra of the s > 1/2 Heisenberg
model in view of interpreting the broad inelastic neutron scattering response reported for Mo72Fe30.
To this end we demonstrate the simultaneous presence of several broadened low-energy “towers of
states” or “rotational bands” which arise from the large discrete spatial degeneracy of the classical
ground states, a generic feature of highly frustrated clusters. This semiclassical interpretation is
further corroborated by their striking symmetry pattern which is shown, by an independent group
theoretical analysis, to be a characteristic fingerprint of the classical coplanar ground states.

PACS numbers: 75.50.Xx,75.10.Jm,75.40.Mg

I. INTRODUCTION

The field of highly frustrated magnetism has received
a growing theoretical and experimental interest in re-
cent years1,2. One of the central motifs in the planar
kagomé and similarly frustrated Heisenberg antiferro-
magnets (AFM’s) which readily differentiates them from
unfrustrated (e.g. collinear) ones, is the proliferation of
an extensive family of low-energy singlets below the low-
est triplet excitation3,4. One interpretation for the origin
of these singlets has emerged from Resonating Valence
Bond (RVB) type of arguments5 for the s = 1/2 kagomé
AFM. For higher spins, purely classical considerations as-
sert that the singlets stem from the splitting by quantum
fluctuations of the extensively degenerate family of Néel
ordered (3-sublattice) ground states6. Both interpreta-
tions rest on the notion of a local degeneracy which stems
from the frustrated corner-sharing topology of these lat-
tices. In this regard, it appears that the proliferation of
singlets is only one particular manifestation of this local
degeneracy since similarly dense low-energy excitations
are manifested in the whole magnetization range.
On the other hand, some understanding for the ground

state itself has been established. Exact Diagonalization
(ED) results suggest that the ground state of the s = 1/2
kagomé AFM is a disordered spin liquid with a very
small spin gap3,4 (if any). For s > 1/2, semi-classical
approaches predict that an extensive subset of coplanar
states is first selected in 1/s while the

√
3×

√
3 ordered

state is stabilized in higher orders through the order-by-

disorder mechanism7,8. In a magnetic field, the ground
state may exhibit a number of interesting phases. These
include the presence of an extensively degenerate family
of localized magnons which result in macroscopic mag-
netization jumps at the saturation field, as well as the
stabilization of spin gaps and the associated fractional
magnetization plateaux. For a first understanding of the
nature of these plateaux a perturbative expansion around
the degenerate Ising point was first employed by Cabra et
al.9 for the kagomé. This approach was recently extended
by Bergman et al.10,11 to other frustrated systems, such
as the pyrochlore AFM. Here, the anisotropy terms are
treated perturbatively, and the emerging splitting of the
degenerate Ising manifold is effectively cast into a Quan-
tum Dimer Model (QDM) on the dual lattice.

At the same time, it is well known that some pre-
cursors of the excitation spectra of frustrated and un-
frustrated AFM’s are already embodied in the spectra
of small system sizes (see for instance Ref. 12). It has
come therefore with no surprise that a number of phe-
nomena that are manifest in kagomé-like AFM’s have
also emerged in the research field of highly frustrated
nanomagnets13,14,15,16,17,18,19. These are realizations of
zero-dimensional molecular-size magnets which consist of
a finite number of strongly interacting transition metal
ions, with the isotropic Heisenberg exchange being the
dominant energy term. Thus, in addition to their great
relevance in the context of nanomagnetism and the grow-
ing interest for potential applications in quantum com-
puting20, information storage21 and magnetic imaging22,
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molecular nanomagnets can also provide a suitable plat-
form for addressing theoretical questions and testing
ideas from the more general context of frustrated mag-
netism.

In this work, we focus on two magnetic molecule real-
izations of the Heisenberg kagomé AFM on the sphere.
The first consists of 8 corner-sharing triangles and is re-
alized in the Cu12La8

23 cluster with 12 Cu2+ s = 1/2
ions occupying the vertices of a symmetric cuboctahe-
dron (cf.Fig. 1). The spin topology of this cluster is
identical to the 12-site kagomé wrapped on a torus (cf.
Fig. 16). The second cluster is one of the largest frus-
trated molecules synthesized to date, namely the giant
Keplerate Mo72Fe30 system24. This features an array
of thirty s = 5/2 Fe3+ ions occupying the vertices of
twenty corner-sharing triangles spanning an almost per-
fect icosidodecahedron (cf.Fig. 1). Interestingly, its quan-
tum s = 1/2 analogue, Mo72V30, consisting of V4+ ions
has also been synthesized quite recently25,26. We may
note here that the cuboctahedron and the icosidodecahe-
dron can be thought of as two existing positive curvature
(with n = 4 and 5 respectively) counterparts of Elser
and Zeng’s27 generalization of the kagomé structure on
the hyperbolic plane where each hexagon is replaced by
a polygon of n sides with n > 6.

Among the above highly frustrated clusters, Mo72Fe30
has been the most investigated so far, both theoreti-
cally and experimentally. The exchange interactions in
Mo72Fe30 are quite small, J/kB ≃ 1.57 K24, and this has
allowed for the experimental observation of a M = Ms/3
plateau at H ≃ 5.9 Tesla which has been explained
classically by Schröder et al.17. In addition, this clus-
ter manifests a very broad Inelastic Neutron Scattering
(INS) response as shown by Garlea et al.28. On the
other hand, Mo72V30 has a much stronger AFM exchange
J/kB ≃ 250 K25,26, and thus is not well suited for the
observation of the field-induced plateau. However, its
low-energy excitation spectrum can still be investigated
by INS experiments (which, to our knowledge, have not
been performed so far). As to the s = 1/2 cuboctahedron
Cu12La8

23, we are not aware of any magnetic measure-
ments reported so far on this cluster.

FIG. 1: (Color online) Schematic representation of the cuboc-
tahedron (left) and the icosidodecahedron (right). The first
consists of 12 vertices, 24 edges, 6 square and 8 triangular
faces, while the latter consists of 30 vertices, 60 edges, 12
pentagons and 20 corner-sharing triangles.

The main magnetic properties of the present clusters
can be explained very well by the isotropic Heisenberg
model with a single AFM exchange parameter J , i.e.

H = J
∑

〈ij〉

si · sj , (1)

where, as usual, 〈ij〉 denotes pairs of mutually interact-
ing spins s at sites i and j. Other terms such as single-
ion anisotropy (for s > 1/2) or Dzyaloshinsky-Moriya
interactions must be present as well in the present clus-
ters, but they are expected to be much smaller than the
exchange interactions and thus they can be neglected.
Here, as a simple theoretical tool to understand some of
the properties of the Heisenberg model, it will be very ex-
pedient to introduce some fictitious exchange anisotropy,
i.e. extend Eq. (1) to its more general XXZ variant

H′ = Hz +Hxy, (2)

Hz = Jz
∑

〈ij〉

szi s
z
j , (3)

Hxy =
Jxy
2

∑

〈ij〉

(s+i s
−
j + s−i s

+
j ) , (4)

where Jxy, Jz denote the transverse and longitudinal ex-
change parameters respectively. In what follows we de-
note α = Jxy/Jz.
The main results presented in this article are of direct

relevance to the experimental findings in Mo72Fe30 men-
tioned above and thus span two major themes. The first
deals with the nature of the low-lying excitations above
the M = Ms/3 plateau phase. For the s = 1/2 icosi-
dodecahedron we show that all these excitations are adi-
abatically connected to collinear “up-up-down” (hence-
forth “uud”) Ising ground states (GS’s), at the same time
being well isolated from higher levels by a relatively large
energy gap. We argue that this feature must be spe-
cial to the topology of the icosidodecahedron and that
it must survive for s = 5/2 as well. This prediction
can be verified experimentally by a measurement of the
low-temperature specific heat and the associated entropy
content at the plateau phase of Mo72Fe30. A comple-
mentary physical picture will emerge by performing a
high order perturbative expansion in α, in the spirit of
Refs. 9,10,11, and by deriving and solving to lowest or-
der the corresponding effective QDM on the dual clusters.
The dependence of the model parameters on α and s is
also found and given explicitly.
Our second theme concerns the origin of the broad

INS response reported for Mo72Fe30
28. Previous theories

based on the excitations of the rotational band model28,29

or on spin wave calculations30,31 predict a small number
of discrete excitation lines at low temperatures and thus
cannot explain the broad INS features. Our interpreta-
tion of this behavior is based on the notion of the simul-
taneous presence of several rotational bands or towers of
states at low energies which originate from the large de-
gree of classical degeneracy, a generic feature of highly
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frustrated systems. Indeed, our exact diagonalizations
demonstrate the existence of an unusually high density
of low-energy excitations manifesting in the full magne-
tization range. A detailed group theory analysis reveals
that the low-energy spectra are of semiclassical origin up
to a relatively large energy cutoff. We will also show
that the symmetry of the corresponding excitations for
s = 1/2 does not conform with this semiclassical picture.

A quite appealing feature of these molecular clusters is
their high point group symmetry, namely the full Octa-
hedral group Oh = O× i (with 48 elements) and the full
Icosahedral group Ih = I × i (with 120 elements) for the
cuboctahedron and the icosidodecahedron respectively
(here i denotes the inversion). This allows for a drastic re-
duction of the dimensionality of the problem. In order to
fully exploit all symmetry operations we have employed
a generalization32 of the standard ED technique33 so as
to treat higher than one-dimensional Irreducible Repre-
sentations (IR’s) also. With this approach, one is able to
classify the energy levels according to both Sz and the IR
of the point group while resolving their full degeneracy.

The remainder of the article is organized as follows.
In Sec. II we discuss some of the spectral features of the
present kagomé-like nanomagnets (with particular em-
phasis on localized magnons) and contrast them to typi-
cal spectra of unfrustrated AFM’s. This is illustrated by
comparing with a simple 12-site bipartite s = 1/2 clus-
ter. The investigation of the nature of the M = Ms/3
plateau is presented in Sec. III. This includes both ana-
lytical and numerical results from high order degenerate
perturbation theory around the Ising limit, the construc-
tion of the associated effective QDM’s and their extrap-
olation to the Heisenberg limit. We also discuss the case
of higher s and the connection to the plateau phase of
Mo72Fe30. In Sec. IV we demonstrate the presence of
several low-energy rotational bands in s > 1/2 Heisen-
berg spectra and reveal their semiclassical origin. The
analysis is based on a careful comparison to the symme-
try properties of the semiclassical states and follows the
basic lines of the seminal works of Bernu et al.34,35 and
Lecheminant et al.3,36 on this subject in the context of
the triangular and kagomé AFM. Predictions for the cor-
responding tower of states are also given for the (s > 1/2)
icosidodecahedron. Our core idea of the presence of sev-
eral rotational bands due to the large spatial degeneracy
of the classical states is also exemplified in Sec. IVB by
a discussion of the much simpler case of the s > 1/2
XY model. We leave Sec. V for an overview of the ma-
jor findings of this work. In order for the manuscript
to be self-contained, we include two appendices. In Ap-
pendix A we summarize the main aspects of the degener-
ate perturbation expansion around the Ising limit, while
in Appendix B we give the details of the derivation of
the full symmetry properties of the semiclassical towers
of states for the Heisenberg and the XY model.

A special remark is in order here regarding our choice
of presentation of the spectra. Since we are interested
in the low-energy excitations in the whole magnetization

FIG. 2: (Color online) Schematic representation of the un-
frustrated, bipartite 12-site cluster discussed in Sec. II. Its
symmetry group is D6h = D6 × i.

range (these are the most accessible and thus most rele-
vant as one ramps up an external field at low tempera-
tures) and in order to best illustrate the central features,
we have chosen to (except for Fig. 3) shift the lowest en-
ergyE0(Sz) (or E0(S)) of each Sz (S) sector to zero. This
guarantees a fine resolution of the low-energy spectra in
the whole magnetization range.

II. UNFRUSTRATED VS. KAGOMÉ-LIKE
AFM’S : GENERAL SPECTRAL FEATURES

(S=1/2)

Our main purpose in this section is to present the low-
energy spectra of the s = 1/2 Heisenberg cuboctahedron
and icosidodecahedron and to highlight their main fea-
tures which are common in all frustrated AFM’s. For
comparison, it is expedient to also present the energy
spectrum of a bipartite unfrustrated magnet. To this
end, we have chosen the hypothetical 12-site cluster de-
picted in Fig. 2. The symmetry of this cluster is the
dihedral group D6h = D6 × i which consists of 24 ele-
ments. Figure 3 shows the low-energy Heisenberg spec-
trum as a function of S(S+1), classified according to the
12 different IR’s of D6h (cf. Ref. 37) shown in the legend.
The spectrum is typical of unfrustrated AFM’s2,12 of fi-
nite size N . For instance, we may associate the lowest
energy band indicated by the dotted line in Fig. 3 with
the so-called Anderson tower of states12, which is the
finite-size manifestation of the SU(2) symmetry break-
ing process occurring in the thermodynamic limit. As
can be seen in Fig. 3, this tower consists entirely of the
two one-dimensional representations A1g and B2g of D6h,
which alternate between even and odd S respectively.
The physics behind this symmetry structure is intimately
related to the symmetry properties of the semiclassical
two-sublattice Néel state. For instance, the combina-
tions A1g ± B2g transform into each other in exactly
the same way as the two spatial counterparts of the Néel
state. Above the lowest tower of states of Fig. 3 there
exists a finite excitation gap followed by a quasi contin-
uum of higher excitations. All these features are typical
of unfrustrated AFM’s.
In contrast, frustrated AFM’s show very different low-

energy features as exemplified by the s = 1/2 spectra
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FIG. 3: (Color online) Low-energy spectrum of the 12-site
bipartite AFM shown in Fig. 2 as a function of S(S + 1) and
classified according to IR’s of the D6h group. The dotted
line denotes the Anderson tower of states which embodies the
finite-size features of the spatial and SU(2) broken Néel state
in the thermodynamic limit.

shown in the two lower panels of Fig. 4 for the two molec-
ular magnets of the present study. For comparison, the
upper panel shows the low-energy portion of Fig. 3 in
terms of Sz. The contrast between the two types of spec-
tra is more than evident (note that both of the upper
two panels correspond to 12-site clusters and are shown
in the same energy scale). The most striking feature
emerging in frustrated AFM’s is the absence of a clear
energy scale separating a lowest band from higher lying
excitations. Instead, a large “bulk” of low-energy exci-
tations is manifested in the whole range of Sz forming
a quasi-continuum. This is a central feature that holds
also for higher s (cf. Sec. IV) and stems from the highly
frustrated exchange interactions in these clusters. The
nature of these excitations for s = 1/2 is not completely
understood5 but, as we are going to show in Sec. IV, a
qualitative understanding can be obtained for s > 1/2
based on the large classical degeneracy of spin configura-
tions which remains dominant in the semiclassical regime.
In particular, the broad INS response reported in Ref. 28
for Mo72Fe30 is naturally accounted for by the results of
this analysis.
Let us now describe shortly some special spectral fea-

tures and their origin. The ground state energies E0(Sz)
for the two nanomagnets for s = 1/2 are given in Table I.
These energies determine the zero-temperature magneti-
zation processes shown in Fig. 5. For the excitations
above the ground state, three regimes of special interest
can be highlighted (see shaded areas in Fig. 4): (i) the
singlet excitations below the lowest triplet57 which are
given in Table II and amount to 7 for the cuboctahedron
and 80 for the icosidodecahedron58, (ii) the existence of
degenerate localized magnons below saturation and (iii)
the presence of a number of well isolated low-lying states
right above the M = Ms/3 (Sz = 5) plateau phase of the
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FIG. 4: (Color online) Low-energy spectra (shifted as de-
scribed in the text) of the s = 1/2 Heisenberg model on the
12-site unfrustrated magnet shown in Fig. 2 (top), on the
cuboctahedron (middle) and the icosidodecahedron (bottom).
Three special features are highlighted by the corresponding
shaded areas in the two lower panels: (i) the low-lying sin-
glets below the first triplet in the Sz = 0 sectors, (ii) the
existence of localized magnons highlighted in the sectors be-
low saturation, and (iii) the lowest 36 Ising-like configurations
(cf.Sec. III B 2) above the plateau Sz = 5 sector of the icosido-
decahedron case (lowest panel). The large energy gap between
these configurations and higher excitations is indicated by the
arrow.
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TABLE I: Lowest energies E0(Sz) of each Sz sector and the
corresponding degeneracies for the s = 1/2 cuboctahedron (a)
and icosidodecahedron (b).

(a) s = 1/2 cuboctahedron

Sz E0(Sz)[J ] deg. Sz E0(Sz)[J ] deg.

0 -5.44487521 1 4 0 3

1 -5.06220685 3 5 3 5

2 -4.36867379 1 6 6 1

3 -2.63135381 1

(b) s = 1/2 icosidodecahedron

Sz E0(Sz)[J ] deg. Sz E0(Sz)[J ] deg.

0 -13.23421620 1 8 -4.80706643 4

1 -13.01640033 1 9 -2.41759676 1

2 -12.61867043 5 10 0.31845649 1

3 -12.05650773 1 11 3.12078845 1

4 -11.22383327 1 12 6 2

5 -10.30278977 5 13 9 25

6 -8.95866550 1 14 12 10

7 -7.01225008 4 15 15 1

TABLE II: (a) Energies of the seven lowest singlets of the
s = 1/2 Heisenberg cuboctahedron lying below the first triplet
E = −5.06220685J (T2u) state, together with their Oh sym-
metry classification and their degeneracy. (b) Energies of the
80 lowest singlets of the s = 1/2 Heisenberg icosidodecahe-
dron lying below the first triplet E = −13.01640033J (Ag),
together with their Ih classification.

(a) s = 1/2 cuboctahedron

Energy [J] IR (deg) Energy [J] IR (deg)

-5.44487521 A1u(1) -5.29823654 Eg (2)

-5.32839240 A1g(1) -5.16529346 T1g(3)

(b) s = 1/2 icosidodecahedron

Energy [J] IR (deg) Energy [J] IR (deg)

-13.23421620 Ag (1) -13.09125447 Hg (5)

-13.18689258 Au (1) -13.08659708 Fg (4)

-13.18057238 T1u(3) -13.07844898 Au (1)

-13.15013156 Hu (5) -13.07310588 Fu (4)

-13.14089964 Ag (1) -13.07200565 T1u(3)

-13.14024171 T1g(3) -13.05645698 T2u(3)

-13.12997109 Hu (5) -13.05072896 Hu (5)

-13.12560855 T2g(3) -13.04261651 Fg (4)

-13.12514475 T2u(3) -13.03366847 T2g(3)

-13.11552338 Hg (5) -13.02470946 Fg (4)

-13.10136600 Fu (4) -13.02203094 Hg (5)

-13.09264778 Hu (5)

s = 1/2 icosidodecahedron. The latter will be analyzed
in detail in Sec. III.
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FIG. 5: (Color online) Zero-temperature magnetization
curves for the Heisenberg cuboctahedron (s = 1/2, 3/2, 5/2)
and the s = 1/2 icosidodecahedron (see also Refs. 15,18).
The saturation magnetization and field values are given by
Ms = Nss(gµB) (where Ns is the number of sites) and
Hs = 6sJ/(gµB).

The concept of localized magnons has been largely
discussed in the context of highly frustrated bulk
AFM’s2,38,39,40,41,42,43. For the present clusters it has
been discussed by Schnack et al.18,19. We shortly re-
visit this issue here in the light of our symmetry re-
solved method. Quite generally, the eigenvalues of H
in the one magnon (M = Ms − 1) subspace are equal
(apart from an overall constant energy shift) to the eigen-
values of the adjacency matrix (Jµν ) times the spin
s44. Our decomposition of the respective subspaces for
the cuboctahedron and the icosidodecahedron in terms
of IR’s of the full Oh and Ih groups are (in order
of increasing energy): (Eg⊕T2u)⊕T2g⊕T1u⊕A1g, and
(Hg⊕Hu)⊕T2u⊕Fg⊕Fu⊕Hg⊕T1u⊕Ag respectively, and
they are compatible to the ones given in Ref. 44 in terms
of IR’s of the O and I subgroups.

For the cuboctahedron, the lowest one-magnon level is
5-fold degenerate (Eg⊕T2u), see Fig. 4(middle). These
correspond to localized, non-interacting magnon states.
The smallest loops that can host such magnons are the
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FIG. 6: (Color online) The minimal loops hosting
the localized k = π magnons on the topology of
the cuboctahedron (a) and the icosidodecahedron (b).
They read |ψ〉 = 1

2

`

s−1 − s−2 + s−3 − s−4
´

|0〉, and |ψ〉 =
1

2
√

2

`

s−1 − s−2 + . . .− s−8
´

|0〉 respectively, where |0〉 is the fer-
romagnetic vacuum. These are exact eigenstates of Eq. (1)
owing to a cancellation of interaction terms resulting from the
special corner-sharing triangles topology38 . In both cases, the
energy ~ωm required to excite these localized states measured
from the ferromagnetic (FM) vacuum |0〉 (E0 = NbJs

2, where
Nb is the number of bonds) equals ~ωm = −6sJ , and is inde-
pendent of the length of the loops.

square faces depicted in Fig. 6(a). The 5-fold degener-
acy is due to the fact that there are 6 different square
faces on this cluster, but not all magnons are indepen-
dent: The sum of all 6 square magnons taken with oppo-
site phases in neighboring squares vanishes. The lowest
energy level of the Sz = 4 two-magnon space is 3-fold
degenerate (Ag⊕Eg), and corresponds to the 3 different
ways of placing two non-interacting magnon excitations
(there are three different pairs of opposite squares). Plac-
ing one more magnon gives an interaction energy cost and
a non-degenerate Sz = 3 lowest level. We should remark
here that magnon states “living” on the hexagonal equa-
tors of the cluster are also exact eigenstates, but each of
these can be easily expressed as a linear combination of
surrounding square magnons. The lowest level degenera-
cies for the one-magnon and the two-magnon space are in
agreement with the values ofN/3+1 andN2/18−N/2+1
respectively with N = 12 which are derived in Ref. 40 for
the kagomé lattice (for which the hexagonal loops are the
most local and natural ones for the description of the lo-
calized magnons).

For the icosidodecahedron, the lowest one-magnon
level is 10-fold degenerate (Hu⊕Hg). Here, the small-
est loops that can host such localized states are the
octagons surrounding a given vertex and depicted in
Fig. 6(b). The 10-fold degeneracy can be attributed to
a non-trivial linear dependence among the 30 different
octagonal magnons on this cluster. The lowest energy
level of the two-magnon manifold is 25-fold degenerate
and decomposes into Ag ⊕ Au ⊕ Fg ⊕ Fu ⊕ 2Hg ⊕ Hu.
Hence, there exist 25 ways of placing two mutually non-
interacting magnons. Similarly, the lowest energy of
the three-magnon space is two-fold degenerate (Ag⊕Au),
whereas that of the Sz = 11 sector is non-degenerate,
signifying that it is not possible to have four magnons
without an interaction energy cost.

The existence of localized, non-interacting magnon
states results in a magnetization jump of ∆Sz > 1, since
the lowest energies at the corresponding Sz sectors scale
linearly with the number of magnons, and thus cross
each other at the same (saturation) field. We remark
here that all features related to the existence of local-
ized magnons (symmetry decomposition, degeneracy, and
the magnetization jump in absolute units) do not depend
on the value of s (see e.g. Fig. 14 below). Finally, the
fact that the number of independent magnons is larger
in the icosidodecahedron than the cuboctahedron case
is clearly related to their size. In extended frustrated
AFM’s, this number grows exponentially with system size
but depends in a non-trivial way on the topology of the
system and is connected to the question of linear inde-
pendence39,40. The extensive degeneracy gives rise to a
macroscopic magnetization jump at the saturation field
and a large magnetocaloric effect (see e.g. Ref. 41). A
study of the latter on the present clusters can be found
in Ref. 19.

III. M =Ms/3 PLATEAU PHASE

In this section, we focus on the nature of the exci-
tations above the M = Ms/3 plateau. There are two
major reasons for paying special attention to this partic-
ular plateau among the remaining ones which are present
anyway in our finite-size clusters (cf.Fig. 5). The first is
of practical interest and is related to the experimental
manifestation17 of this particular phase in the s = 5/2
Mo72Fe30 cluster. Besides, as shown in the upper panel of
Fig. 5, the M = Ms/3 plateau seems to be the most sta-
ble and survives at finite s > 1/2 (the staircase s = 1/2
magnetization process eventually turns into the expected
(classical) linear behavior17 for very large s). The second
reason is that the M = Ms/3 plateau phase is a generic
feature of frustration and is known to survive in the ther-
modynamic limit for some bulk AFM’s (cf. Ref. 2).
In Sec. III A we present and analyze a striking fea-

ture of the excitations above the plateau phase of the
s = 1/2 icosidodecahedron and show how it can be ob-
served experimentally in thermodynamic measurements.
In Sec. III B we present our derivation of an effective
Quantum Dimer Model for the plateau and reveal the
major role of the topology and the spin s.

A. Thermodynamics

Our Exact Diagonalizations for the s = 1/2 icosido-
decahedron shown in the lowest panel of Fig. 4 reveal a
striking feature at the M = Ms/3 sector: The low-lying
excitation spectrum immediately above the plateau con-
sists of a group of 36 states (their energies are given in
Table III) which are well isolated from higher excitations
by a gap of order 0.2J , an order of magnitude larger than
the excitations (∼ 0.01J) within this manifold. We ar-
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TABLE III: Energies (in units of J) of the 36 lowest Sz = 5
states of the s = 1/2 Heisenberg icosidodecahedron together
with their Ih classification. The lowest excitation above this
manifold lies at E = −10.04843786 (Hg).

Energy [J] IR(deg) Energy [J] IR(deg)

-10.30278978 Hu (5) -10.26904953 Hu (5)

-10.29875816 Ag (1) -10.26657194 Hg (5)

-10.29837409 Hg (5) -10.25765943 Hg (5)

-10.29057364 Fg (4) -10.25604215 Ag (1)

-10.28622445 Fu (4) -10.24060604 Au (1)
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0.6

C
m

  [
k B

]
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4
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B
]

FIG. 7: (Color online) Temperature dependence of the mag-
netic entropy Sm and specific heat Cm (in units of Boltz-
mann’s constant kB) content of the lowest 36 plateau states
of s = 1/2 Heisenberg icosidodecahedron. Here the magnetic
field corresponds to the center of theM =Ms/3 plateau. The
entropy starts off from the value ln 5 ≃ 1.6094 corresponding
to the lowest 5-fold degenerate Hu state. The dashed line
denotes the entropy value of ln 36 ≃ 3.5835 corresponding to
the full 36-fold low-energy subspace.

gue below that this peculiar feature must be related to
the special topology of the icosidodecahedron (it does not
appear for the cuboctahedron). Given this behavior, it
is expedient to consider the low-temperature dependence
of the magnetic specific heat and entropy content of the
lowest 36 plateau states. These quantities are shown in
Fig. 7 for the s = 1/2 case and for gµBH ≃ 1.1326J
(where g is the electronic spectroscopic factor and µB

the Bohr magneton) which corresponds to the center of
the M = Ms/3 plateau. At this field value, the lowest
excitations of the adjacent Sz = 4 and Sz = 6 sectors lie
approximately 0.2J above the ground manifold (higher
Sz = 5 states lie ∼ 0.25J above). Hence, the temperature
behavior shown in Fig. 7 must be valid at kBT . 0.1J .
In this temperature regime, the entropy content of the

(b)

1

2 3

4

(a)

FIG. 8: (Color online) A local view of one of the “uud” Ising
configurations (with two spins pointing up and one down in
each triangle) and the mapping between vertices of the cuboc-
tahedron (solid line in (a)) and edges of its dual cluster, the
cube (dashed lines). In (a), all spins point up except the ones
at vertices 1 and 3 (designated by the black dots) which point
down. By mapping each down spin in (a) to a dimer on the
corresponding edge of the cube we obtain the dimer plaquette
in (b). As discussed in Sec. III B 1, such square loops with al-
ternating up-down spins have the minimum even length and
thus govern the lowest order kinetic processes driven by Hxy .
In (a), these read t s+1 s

−
2 s

+
3 s

−
4 with t ∝ α4s and map to the

dimer plaquette flip of Eq. (11). The lowest order diagonal
processes are also confined on these square loops and scale as
v ∝ α4.

lowest Sz = 5 states is already saturated to its full value
of ln 36 ≃ 3.5835 (dashed line) which amount to a siz-
able fraction of about 17% of the full 30× ln 2 ≃ 20.7944
magnetic entropy of the cluster. The fine details of Fig. 7
can be associated to the actual splitting between the 36
states. For instance, the double-peak form of the specific
heat stems from the small separation of the first 19 from
the remaining 17 states (cf.Table III and lowest panel of
Fig. 4). Note also that the entropy starts off from the
value ln 5 ≃ 1.6094 corresponding to the lowest 5-fold
degenerate Hu state (cf.Table III).

Unfortunately the plateau regime of Mo72V30 cannot
be reached experimentally due to the large exchange
value of J/kB ≃ 250 K. We shall argue below, based on
the results of our effective QDM, that a similar structure
must exist above the M = Ms/3 plateau of the s = 5/2
Mo72Fe30 cluster. In particular, we shall argue that (i)
the lowest 36 states are split into two almost degener-
ate levels of 30 and 6 states respectively with the former
being lowest in energy, and (ii) that a sizable gap be-
tween these 36 states and higher excitations must proba-
bly survive as well. The corresponding specific heat peak
can be verified by thermodynamic measurements on the
Mo72Fe30 cluster at the plateau regime of H ≃ 5.9 Tesla.
Despite the very small exchange value (J ≃ 1.57 K) of
Mo72Fe30 (one presumably needs to reach ultra low tem-
peratures, T . 200 mK) one may still confirm our picture
by an assessment of the missing entropy45,46.
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(a)

8 7
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2 5
4

(b)

3

1

FIG. 9: (Color online) A local view of one of the “uud” Ising
configurations (with two spins pointing up and one down in
each triangle) and the mapping between vertices of the icosi-
dodecahedron (solid line in (a)) and edges of its dual cluster,
the dodecahedron (dashed lines). In (a), all spins point up ex-
cept the ones at vertices 2, 4, 6 and 8 which point down. By
mapping each down spin in (a) to a dimer on the correspond-
ing edge of the dodecahedron one obtains the dimer plaquette
in (b). As discussed in Sec. III B 2, such octagonal loops with
alternating up-down spins have the minimum even length and
thus govern the lowest order kinetic processes driven by Hxy.
In (a), these read t s−1 s

+
2 s

−
3 . . . s

+
8 with t ∝ α8s and map to

the dimer plaquette flips of Eq. (16). On the other hand,
the lowest order diagonal processes are confined in a single
pentagon and scale as v ∝ α5.

B. Effective QDM

In what follows we present a complementary picture
for the nature of the excitations above the plateau phase.
This picture reveals the central role of the topology and
the intrinsic spin s and will emerge from the derivation
of an effective quantum dimer model (QDM) in the spirit
of Refs. 9,10,11 . The main idea is to start from the de-
generate M/Ms = 1/3 ground state configurations of the
Ising limit and establish an adiabatic connection to the
low-lying excitations of the Heisenberg point by employ-
ing a perturbative expansion in the anisotropy parameter
α = Jxy/Jz. The resulting effective Hamiltonian can be
cast into the form of a QDM on the dual clusters as ex-
emplified in Figs. 8 and 9 for the cuboctahedron and the
icosidodecahedron respectively. For a general spin s, the
M = Ms/3 ground state manifold of the Ising Hamilto-
nian Hz spans all configurations with two spins having
m = s and one with m = −s in each triangle. Each
one of these “uud” states on the cuboctahedron and the
icosidodecahedron is in one-to-one correspondence to a
closed-packed dimer covering on their dual clusters, the
cube and the dodecahedron respectively.

1. Cuboctahedron

We start with the “uud” GS’s of the Ising cuboctahe-
dron. There are nine such states since this is the number
of different dimer coverings on the cube. This manifold,
henceforth Puud, decomposes into two invariant (under

Oh) “uud” families P
(6)
uud and P

(3)
uud with 6 and 3 states

respectively:

Puud = P
(6)
uud ⊕P

(3)
uud , (5)

where

P
(6)
uud = A1g⊕ Eg⊕ T2u, P

(3)
uud = A1g⊕ Eg . (6)

Each of the two families contains states with a fixed num-
ber nc (2 and 4 respectively) of square plaquettes of the
type of Fig. 11(c) (this number remains invariant under
the operations Oh of the cluster).
The 9 “uud” states are highlighted in Fig. 10 which

shows our symmetry-resolved ED results for s = 1/2,
3/2, and 5/2 (at their M = Ms/3 sector) as a function
of the anisotropy parameter α. The energies are given
in units of Jzα

2 and Jzα
4 for s = 1/2 and s = 3/2, 5/2

respectively, which are the leading orders of the energy
splitting due to Hxy (see below). Figure 10 shows that
the Heisenberg states which are adiabatically connected
to the lowest Ising manifold are not the lowest excitations
for s = 1/2 while this is clearly the case for higher spins
and, as we show below, for the s = 1/2 icosidodecahedron
as well.
We shall try now to understand some of the features

of Fig. 10 in more detail by considering the lowest order
effect of Hxy in splitting the Ising nine-fold degenerate
manifold, as a function of spin and α. We follow the gen-
eral guidelines and considerations of the Appendix A. We
distinguish between diagonal and off-diagonal processes
depending on whether the initial state is finally recovered
or not. The former come from the smallest closed paths
on the molecule (beyond triangles), which in the present
case are the square loops (see left panel of Fig. 1) and the
corresponding amplitudes scale with the fourth power of
α for all s. Now, there are only three possible configu-
rations on a square which respect the “uud” constraint
and these are depicted in Fig. 11(a), (b) and (c). Each
one carries a certain diagonal energy, say ǫa, ǫb and ǫc.
We have calculated these energies as a function of s using
Eq. (A2) and by enumerating all relevant processes. The
results are

ǫa(s) = 0 ,

ǫb(s) = − s3

2(4s− 1)2
Jzα

4 ,

ǫc(s) = −2
s4δs,1/2

(4s− 1)2(2s− 1)
Jzα

4 . (7)

The Kronecker symbol δs,1/2 appears in ǫc(s) because
some of the diagonal processes relevant for s > 1/2 are
not present for s = 1/2 since they involve intermediate
states which do not belong to the Ising manifold.59 Now,
to any given Ising configuration i there corresponds an
associated potential energy equal to Ei = ni

aǫa + ni
bǫb +

ni
cǫc, where ni

a, n
i
b, n

i
c are the number of squares in the

states a, b and c, respectively in i. On the other hand,
we must satisfy two global conditions, one for the total
number of squares Ns = 6 = ni

a + ni
b + ni

c, and another
for the total number of down spins Nd = 4 = ni

b/2 + ni
c.

This leaves us with one independent, non-global variable,
say ni

c, in terms of which one can express Ei. Omitting
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FIG. 10: (Color online) Lowest energy spectrum of the XXZ
model on the cuboctahedron as a function of α = Jxy/Jz ,
for s = 1/2 (top), 3/2 (middle), and s = 5/2 (bottom). The
energies are given in units of Jzα

2 (top) and Jzα
4 (middle and

bottom), which correspond to the leading orders of the energy
splitting due to Hxy (see text). For s = 1/2, the dominant
off-diagonal processes split completely the 9-fold degeneracy
of the Ising point. For higher spins, the diagonal processes
dominate and give rise to a splitting of 2v(s, α) between the
two “uud” families of Eq. (5) as predicted from perturbation
theory (see text). Filled squares denote the eigenvalues of the
effective QDM of the corresponding leading term for each s.

(a) (c)(b)

FIG. 11: The three possible local (on the square loops) views
of the “uud” configurations of the cuboctahedron. Filled cir-
cles denote spins with m = −s, all remaining vertices have
m = s.

a global energy term 8ǫb − 2ǫa, we find Ei = v(s, α)ni
c

with

v(s, α) = ǫa − 2ǫb + ǫc =
s3(2sδs,1/2 − 1)

(4s− 1)2(2s− 1)
Jzα

4 , (8)

which is positive for s = 1/2 and negative otherwise. The
corresponding (lowest order) effective diagonal Hamilto-
nian reads

V(4)
eff = v(s, α)

∑

∣

∣

∣

〉〈 ∣

∣

∣
, (9)

where the sum runs over all six square plaquettes (with
both orientations) of the cluster. We may easily check
that among all nine possible dimer coverings of the cube,

three of them have nc = 4 and thus V(4)
eff = 4v(s, α), while

the remaining six have nc = 2 and thus V(4)
eff = 2v(s, α).

These correspond to the two families of “uud” states
mentioned above, see Eq. (5). Hence, the eigenvalues of

V(4)
eff form a pair of a 6-fold and a 3-fold degenerate lev-

els with an energy splitting of 2v(s, α) between them. In
particular, this splitting amounts to 27

200Jzα
4 for s = 3/2

and 125
1296Jzα

4 for s = 5/2.
We now consider off-diagonal processes. To lowest or-

der in α, these are confined to the maximally flippable
even-length loops of the cluster. These loops are the al-
ternating spin up-down configurations already shown in
Fig. 8. The corresponding flipping amplitude t scales as
α4s. Their explicit values for several s are provided in
Table VII (with L = 4) of Appendix A. Thus the leading
kinetic effect is described in the dimer representation by
the term

T (4s)
eff = t(s, α)

∑

(∣

∣

∣

〉〈 ∣

∣

∣
+ h.c.

)

, (10)

where t(s, α) can be calculated explicitly using
Eq. (A2) and enumerating all different processes.
Several representative values are provided in Ta-

ble VII. The eigenvalues of T (4s)
eff in units of t

are: −2
√
2,−

√
2,−

√
2, 0, 0, 0,

√
2,
√
2, 2

√
2. These cor-

respond to a complete splitting of the different IR’s of
each of the two families of Eq. (5).
According to the above, our effective quantum dimer

model should generally include both kinetic and potential
terms. To leading order, this model reads

Heff = V(4)
eff + T (4s)

eff . (11)
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For s = 1/2 we have t = −Jzα
2, v = Jzα

4/8 and the
dynamics is mainly governed by kinetic processes which
split completely (cf. Fig. 10(a)) the nine “uud” states.
For s = 1 we have t = −Jzα

4, v = −Jzα
4/9 and thus

both diagonal and off-diagonal processes are equally im-
portant. For s > 1 the diagonal processes dominate and

give rise to a splitting of 2v(s, α) between P
(6)
uud and P

(3)
uud

of Eq. (5). In particular, since v < 0, the states of P
(3)
uud

will be favored because they have a larger number (four)
of the plaquettes of Fig. 8(c). All these features are nicely
demonstrated in Fig. 10 where we compare our ED re-
sults for the XXZ model at small α with the leading
order eigenvalues of Eq. (11) which are shown as (red)
filled squares.

2. Icosidodecahedron

We turn now to the corresponding plateau phase of the
Heisenberg icosidodecahedron and follow a similar anal-
ysis as above. Here the lowest Ising manifold, henceforth
Ruud, consists of 36 “uud” states which are in one-to-
one correspondence with the 36 dimer coverings of the
dodecahedron. We find that this manifold decomposes

into two invariant (under Ih) families R
(30)
uud and R

(6)
uud of

30 and 6 states respectively as

Ruud = R
(30)
uud ⊕R

(6)
uud , (12)

where

R
(30)
uud = Ag⊕Au⊕ Fg⊕ Fu⊕ 2Hg⊕ 2Hu ,

R
(6)
uud = Ag⊕Hg . (13)

Each of these families contains states with a fixed number
nc (8 and 10 respectively) of pentagonal plaquettes of
the type of Fig. 12(c) (this number remains invariant
under the symmetry operations Ih of the cluster). We
should note in particular that each of the 6 states of

R
(6)
uud contain two pentagons with all spins pointing up

(i.e. have na = 2, cf.Fig. 12(a)).
A simple inspection of Fig. 13(a), which shows the

s = 1/2 lowest energy spectrum of the XXZ model, re-
veals that the lowest 36 Heisenberg states trace back to
the ground state “uud” manifold of the Ising point. A
striking difference to the s = 1/2 cuboctahedron case
studied above is that as these lowest Ising states “evolve”
toward their low-lying Heisenberg counterparts, they re-
main always well separated from the higher energy states
in the Sz = 5 subspace. We now give a complementary
picture, which is valid at least for small α, by considering
the lowest order processes driven by Hxy and by deriving
the corresponding effective QDM on the dodecahedron.
We begin with the lowest order off-diagonal processes.
As above, these stem from maximally flippable loop con-
figurations of the smallest possible even length L. Such
a loop configuration that respects the local “uud” con-
straint is the octagonal loop with alternating up-down

(b) (c)(a)

FIG. 12: The three possible local (on the pentagonal loops)
views of the “uud” configurations on the icosidodecahedron.
The filled circles denote spins with m = −s, all remaining
vertices have m = s.

spins depicted in Fig. 9(a) which in turn maps to the flip-
pable plaquette of the dodecahedron shown in Fig. 9(b).
For spin s = 1/2 then, the lowest off-diagonal term in
Heff is of fourth order in Hxy. Each “up-down” loop of
the type shown in Fig. 9(a) is amenable to a kinetic pro-
cess of the form t s−1 s

+
2 s

−
3 . . . s+8 . From our calculations,

shown in Table VII, we obtain t = −2.5Jzα
4. In fifth

order, we find two types of kinetic processes. The first is
similar to the above but now involves loops of length 10
such as the equators of the molecule. The second type
is less obvious, and invokes again the octagonal loops of
Fig. 9(a) and any one of the neighboring spin sites. Since
these loops map to exactly the same flippable dimer pla-
quette of Fig. 9(b) their effect is to merely renormalize
the fourth-order amplitude t. In fact, these terms re-
sult in an overall decrease of |t| since they carry an extra
negative sign.
On the other hand, the lowest order diagonal processes

must be confined to the smallest closed path which in
the present case are the pentagons of the molecule (see
right panel of Fig. 1). The three possible types of con-
figurations that respect the “uud” constraint around a
pentagon are depicted in Fig. 12 and are designated by
a, b and c. Each one carries a certain diagonal energy,
say ǫa, ǫb and ǫc. These are calculated by enumerating
all relevant processes and using Eq. (A2) of Appendix A.
They are explicitly given by

ǫa = 0 ,

ǫb =
s3

8(4s− 1)2
Jzα

5 ,

ǫc =
6s4

(4s− 1)(8s− 3)2
Jzα

5 . (14)

To any given Ising configuration i there corresponds an
associated energy equal to Ei = ni

aǫa+ni
bǫb+ni

cǫc, where
ni
a, n

i
b, n

i
c are the number of pentagons in the states a, b

and c respectively in i. On the other hand, we must again
satisfy two global conditions, one for the total number of
pentagons Np = 12 = ni

a +ni
b + ni

c, and one for the total
number of down spins Nd = 10 = ni

b/2 + ni
c. This leaves

us with one independent, non-global variable, which we
choose to be ni

c. Omitting a global energy 20ǫb− 8ǫa, we
find Ei = v(s, α)ni

c, with

v(s, α) = ǫa−2ǫb+ǫc =
s3(32s2 + 24s− 9)

4(4s− 1)2(8s− 3)2
Jzα

5 , (15)
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FIG. 13: (Color online) (a) Lowest eigenvalues of the s = 1/2
XXZ model on the icosidodecahedron in the Sz = 5 sector.
Interpolation between the α = 0 Ising and the α = 1 Heisen-
berg point. The large energy separation between the lowest
36 states and higher excitations is clearly evident. (b) Con-
vergence of the lowest 36 eigenvalues (in units of Jzα

4 which
is the leading order) toward the eigenvalues (filled squares) of

the effective dimer Hamiltonian T (4)
eff of Eq. (16) as described

in the text.

which is positive for all s. This means that v(s, α) favors
configurations with the minimum number of the pentag-

onal states of Fig. 12(c). Since all 30 states of R
(30)
uud have

nc = 8 while the 6 states of R
(6)
uud have nc = 10, the

former family will be lower in energy by a splitting of
2v(s, α). Furthermore, it is clear that diagonal processes
do not give rise to a splitting within the two families.
s = 1/2 case.— Given all the above, the effective QDM

for the plateau phase of the s = 1/2 Heisenberg icosi-
dodecahedron is, at lowest order, dominated by kinetic,
off-diagonal processes of the form

Heff ≃ T (4)
eff = t

∑

∣

∣

∣

〉〈 ∣

∣

∣
+ h.c. , (16)

where the sum runs over all octagonal plaquettes and
t = −2.5Jzα

4. The corresponding 36 × 36 Hamiltonian
matrix can be constructed and solved numerically for its
eigenvalues. These are provided in Table IV in units of

TABLE IV: Eigenvalues (in units of t) of Heff given in
Eq. (16), together with their multiplicities.

Energy[t] deg. Energy[t] deg.

-4 1 -0.694593 5

-3.06418 5 1 4

-2.89898 1 2 5

-2 5 3.75877 5

-1 4 6.89898 1

t. They are also shown as filled squares in Fig. 13(b). In
the same figure, we show the lowest 36 eigenvalues (di-
vided by Jz) of H′ in units of α4. The clear convergence
for small α toward the eigenvalues of Heff confirms the
validity of our perturbative calculations. Moreover, the
fact that the convergence is linear confirms that the next
processes contributing to Heff come in fifth order. In
particular, the clear decrease of the bandwidth with α is
in agreement with our previous assertion that the fourth
order amplitude t of Eq. (16) gets renormalized from the
fifth order octagonal kinetic processes mentioned above.
The latter seem to dominate over the corresponding fifth
order off-diagonal decagonal loop processes and the fifth
order diagonal ones. Looking at Fig. 13(a) one notes that
this may be even more general: To all orders in Hxy,
there seems to be a mere renormalization of the band-
width without drastically altering the relative amplitudes

of the eigenvalues of T (4)
eff . This suggests a dominance of

the most local (octagonal) kinetic processes renormalized
from all orders in Hxy.
s > 1/2 and relevance to Mo72Fe30.— As mentioned

above, diagonal processes first appear in fifth order irre-
spective of s. On the other hand, the lowest off-diagonal
process on a loop of L (even) sites appears in order Ls.
For instance, the octagonal loops discussed above give
processes at order 8s (and higher), whereas decagonal
(e.g. the equatorial) loops contribute in order 10s (and
higher). Hence for s = 1 diagonal and off-diagonal pro-
cesses are equally important, while for s > 1 the physics
will be completely dominated by diagonal processes of
fifth order in α:

Heff ≃ V(5)
eff = v(s, α)

∑

∣

∣

∣

〉〈
∣

∣

∣
, (17)

where the sum runs over all pentagonal plaquettes (with
all possible orientations) and v(s, α) is given by Eq. (15).
As explained above these processes result in a diago-

nal splitting of 2v(s, α) between R
(30)
uud and R

(6)
uud with

the former family being lowest in energy. For s = 5/2
in particular, which is relevant for the plateau phase of
Mo72Fe30

17, this splitting amount to the quite small value
of 2v ≃ 0.0838Jzα

5. Since, at the same time, the exci-
tations out of the Ising manifold are expected to remain
gapped for the finite value of s = 5/2, we speculate that
the plateau phase of Mo72Fe30 must show a characteristic
low-temperature thermodynamic signal which is qualita-
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tively similar to that of Fig. 7 (up to fine details related
to the 30 to 6 diagonal splitting). Here, in particular,
the entropy content of the renormalized “uud” manifold
amounts to approximately 7% of the full magnetic en-
tropy. This calls for low-temperature specific heat mea-
surements on Mo72Fe30 at the plateau phase as explained
in Sec. III A. More generally, it is exciting that the no-
tion of a Quantum Dimer Model finds a realization in
the low-energy M = Ms/3 plateau physics of finite-size
magnetic clusters like Mo72Fe30 or Mo72V30.

IV. HEISENBERG SPECTRA FOR s > 1/2

The major focus of this section is on Heisenberg spec-
tra with s > 1/2. Our interest in this regard is mainly
motivated by the INS experiments reported by Garlea et

al.28 on Mo72Fe30. The main finding of these experiments
is a very broad response which manifests in a wide range
of fields. Previous theories which are based either on the
excitations of the rotational band model28,29 or on spin
wave calculations30,31, could not account for the observed
behavior since they predict only a small number of dis-
crete excitation lines at low temperatures. Although the
diagonalization of the s > 1/2 icosidodecahedron is not
feasible (at low magnetizations) with current computa-
tional power, an immediate interpretation of this behav-
ior can be deduced from a study of the cuboctahedron.
Exact diagonalization spectra of this cluster for s = 3/2
and s = 5/2 are shown in the two lower panels of Fig. 14.
For comparison we have also included the s = 1/2 spec-
trum (this was shown before in the middle panel of Fig. 4
in terms of Sz instead of the total spin S). Here, in con-
trast to unfrustrated clusters (cf. upper panel of Fig. 4),
there does not exist any well isolated and thus clearly
identified low-energy tower of states or rotational band.
Instead, a “bulk” of very dense excitations are present in
the full magnetization range. This is a generic feature of
highly frustrated systems which manifests irrespective of
s and thus must be also present in the s = 5/2 Mo72Fe30
cluster (similarly to its s = 1/2 analogue of Fig. 4).
The origin of these dense excitations for s > 1/2 can

be readily suggested by the following striking observa-
tion in Fig. 14: The spectra consist, up to a relatively
large energy cut-off, entirely of the representations A1g,
A2g, Eg, and T2u. The main message in the following
is that this peculiar spatial symmetry pattern as well as
the combined spatial+spin pattern (i.e., the appearance
of specific sets of spatial IR’s in each S sector) are char-
acteristic fingerprints of the 3-sublattice Heisenberg clas-
sical GS’s. For instance, as we explain below, these four
representations are exactly the ones that appear in the
symmetry decomposition of the coplanar classical GS’s
(cf. Eq. (19) below). The dense excitation features of the
lower two panels of Fig. 14 can be thereby accounted for
by the large spatial degeneracy of these configurations, a
fact whose importance does not seem to have been rec-
ognized in the past. In principle, each of these states

gives rise to a distinct “tower of states” or “rotational
band” and they all appear together at low energies al-
beit split by quantum fluctuations. So the large discrete
degeneracy has a direct impact on the low-energy spec-
trum, and we believe this large number of levels is at the
very heart of the broad INS response reported in Ref. 28.
By contrast, the absence of a clear symmetry pattern in
the s = 1/2 spectra (cf. upper panel of Fig. 14) shows
that the associated low-lying excitations are of different
origin.
Before analyzing further our numerical results it is use-

ful to recall (cf. Subsec. IVA below) what is known
about the classical GS’s of the infinite kagomé lattice
in zero and finite field and discuss what carries over in
the present clusters. In particular, we give the explicit
spatial degeneracy of the coplanar GS’s and a short sum-
mary of their symmetry properties. The latter have been
derived independently by employing a group theoretical
analysis, the details of which have been relegated to Ap-
pendix B. Our semiclassical interpretation for the origin
of the dense excitations of the above s > 1/2 spectra
will be further corroborated by a closer comparison of
the symmetry pattern of the spectra with the combined
spatial+spin symmetry of the coplanar GS’s also derived
in Appendix B. In Subsec. IVB we discuss the simpler
case of the s > 1/2 XY model which exemplifies very
evidently the main idea of this section, i.e., the simulta-
neous presence of several lowest towers of states due to
the discrete classical degeneracy.

A. Classical GS’s and large spatial degeneracy

Let us first consider the ground state configurations
of the classical Heisenberg model in the infinite kagomé
system and the present clusters. The corner-sharing tri-
angles structure makes the discussion rather simple. The
classical Hamiltonian can be rewritten in the suggestive
form (in units of gµB = 1)

HHB
classical =

J

2

∑

∆

(S∆ −H/2J)
2
, (18)

where S∆ denotes the total spin on a triangle ∆. In this
form it is straightforward to see that all configurations
with S∆ = H/2J on each triangle are GS’s. It is useful
to examine the zero-field case first.
Zero-field case.— Here, the classical constraint S∆ = 0

amounts to a simple 120◦ configuration of the three spins,
which is depicted in Fig. 15(a). An important point here
and in the following is to determine how many such GS’s
exist. For the kagomé lattice it is well known that the
ground state manifold consists of both coplanar and non-
coplanar configurations in zero field. The coplanar GS’s
are extensively degenerate as can be shown by a map-
ping onto vertex three-colorings of the kagomé lattice or
equivalently onto bond three-colorings of the Honeycomb
lattice47,48. On the other hand the non-coplanar GS’s
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FIG. 14: (Color online) Low-energy spectra of the AFM
Heisenberg cuboctahedron for s = 1/2 (top), 3/2 (middle)
and 5/2 (bottom) in terms of the total spin S. All energies
are measured from their corresponding E0(S).

can be generated from the coplanar ones by the follow-
ing recipe: Identify a loop of alternating spin orientations
(two out of three directions), which is either closed or ex-
tends to infinity. All sites neighboring the loop share the
common third spin direction. It is then possible to col-
lectively rotate the spins on the loop freely around the
third direction at zero energy cost. Such a new state is
clearly non-coplanar, but still a ground state.

Let us now discuss what carries over of this large clas-

H  /3s H  /3s(b) 0 < H < (c) H > 

A

B

C C

B A

φ

AB

C

ξ

η
H

(a) H=0, 120−degrees 

FIG. 15: Classical GS’s of the Heisenberg model on the
kagomé AFM which are selected by quantum or thermal fluc-
tuations. (a) In zero-field, these are the 120◦ states. In finite
fields ((b) and (c)), the three spins lie on the plane of the field.
(b) For H < Hs/3, we have a one-parameter (φ < 120◦) fam-
ily of states with one of the spins (C) pointing antiparallel to
the field. (c) For H ≥ Hs/3, we have a two-parameter (ξ and
η) family of states with two spins (A and B) being collinear.
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FIG. 16: Two of the 24 possible vertex three-colorings on the
cuboctahedron which is projected on a plane here (periodic
boundary conditions along the two arrows are implied). (a)
One of the 6 colorings of the Γ (or q = 0) family, and (b) one
of the 18 colorings of the M family.

sical degeneracy on the two present molecules. It is
straightforward to enumerate all vertex-three colorings
for both the cuboctahedron and the icosidodecahedron
and the respective numbers are 24 and 60, or 4 and 10
if one discards global recolorings. Two such states of the
cuboctahedron are illustrated in Fig. 16, while a typical
one for the icosidodecahedron can be found in Fig. 2 of
Ref. 49. We stress here that these 4 and 10 states are un-
related by the global O(3) symmetry, and therefore form
genuinely different GS’s and give rise to distinct “tower of
states” at low-energies. The spatial symmetry properties
of these states have been derived in Appendix B and can
be summarized as follows. The 24 vertex three-colorings
of the cuboctahedron form two invariant (under the op-
erations of Oh) families P

Γ
ABC and P

M
ABC which consist

of 6 and 18 states respectively, and they decompose into
IR’s of Oh as

P
Γ
ABC = A1g⊕A2g⊕ 2Eg ,

P
M
ABC = 3(A1g⊕ Eg⊕ T2u) . (19)

As mentioned above, these are exactly the IR’s that ap-
pear (with open symbols) in the spectra of the lower two
panels of Fig. 14. On the other hand, the 60 vertex three-
colorings of the icosidodecahedron form two invariant
(under the operations of Ih) families which are equiva-



14

TABLE V: Heisenberg point: Decomposition of semiclassical
coplanar states into IR’s of G = SU(2) × R (where R = Oh

or Ih) up to S = 6. N denotes the number of IR’s for each S
sector of SU(2), and is equal to (2S +1) times the number of
coplanar states in each family divided by six (i.e., 4 and 10 for
the cuboctahedron and the icosidodecahedron respectively).
For the derivation see Appendix B.

Cuboc. Cuboc. Icosi.

S PΓ
ABC(1× 6) N PM

ABC(3× 6) N RABC(10× 6) N

0 A1g 1 A1g,Eg 3 Ag,Au,Fg,Fu 10

1 A2g,Eg A1g,Eg, Ag,Au,Fg,Fu,

3 2T2u 9 2(Hg,Hu) 30

2 A1g,2Eg 3(A1g,Eg), Ag,Au,Fg,Fu,

5 2T2u 15 4(Hg,Hu) 50

3 A1g,2A2g,2Eg 3(A1g,Eg), 3(Ag,Au,Fg,Fu),

7 4T2u 21 4(Hg,Hu) 70

4 2A1g,A2g,3Eg 5(A1g,Eg), 3(Ag,Au,Fg,Fu),

9 4T2u 27 6(Hg,Hu) 90

5 A1g,2A2g,4Eg 5(A1g,Eg), 3(Ag,Au,Fg,Fu),

11 6T2u 33 8(Hg,Hu) 110

6 3A1g,2A2g,4Eg 7(A1g,Eg), 5(Ag,Au,Fg,Fu),

13 6T2u 39 8(Hg,Hu) 130

lent to each other (cf. Appendix B). Here, we shall treat
these families collectively as a single one called RABC.
This decomposes into IR’s of Ih as60

RABC = 2(Ag⊕Au⊕ Fg⊕ Fu⊕ 2Hg⊕ 2Hu) . (20)

As to the non-coplanar GS’s (in zero-field), it turns out
that the icosidodecahedron has none, since all the alter-
nating loops described above have maximal length (20),
and therefore the rotation of the spins on the loop just
changes the global spin plane, thus preserving the copla-
narity. The cuboctahedron however has non-coplanar
GS’s, since the loops can have length shorter than eight,
in agreement with previous studies44,49.
When switching on quantum fluctuations on the

kagomé lattice it is known that the spin waves at har-
monic order select the coplanar GS’s over the non-
coplanar ones (order-by-disorder effect), due to the larger
number of soft modes of the former50. A complete lifting
of the remaining (spatial) degeneracy is taking place at
the level of anharmonic spin waves, whereby the single√
3 ×

√
3 magnetically ordered state is selected7,8. On

the other hand for the extreme quantum case of s = 1/2
a number of numerical works clearly show the absence
of any magnetic order3,4. So based on these conflicting
results it is difficult to predict to which regime the inter-
mediate values of spin will belong.
We now give a symmetry analysis for the cubocta-

hedron spectra at low magnetizations which suggests
strongly that the low-lying excitations can be described
in semiclassical terms at the harmonic spin-wave level.
To this end, we should first emphasize that the non-

coplanar GS’s do not carry the above spatial symmetry
because not all triangles share the same spin plane in
these configurations and thus spatial operations gener-
ally cannot relate different triangles. This means that
the striking agreement between the spatial symmetry of
the above low-energy spectra and Eq. (19) is not just acci-
dental. Of course there can be other states whose spatial
decomposition can in principle contain some or all of the
IR’s of Eq. (19) (in fact such states will be examined be-
low for finite magnetizations). More stringent evidence
comes by comparing the full spatial+spin symmetry pat-
tern of the exact spectra to that of the 120◦ states. The
latter has been derived in Appendix B and the results
are provided in Table V up to S = 6. A closer inspection
of the s = 3/2 and 5/2 spectra (cf. lower two panels of
Fig. 14) shows a remarkable agreement: All lowest-energy
levels (shown with open (black) symbols) which are below
the levels shown with filled (red) symbols can be identi-
fied in Table V with the right combinations of spatial and
spin representations and multiplicity. It is important to
note here that, although these towers are severely split by
quantum fluctuations —in fact some IR’s of Table V (e.g.
one A1g level at the S = 0 sector) can be found slightly
higher than the lowest (red) filled symbols— almost the
entire set of levels contained in Table V are found below
the filled symbols with no extra level appearing. Thus
we believe the combined spatial+spin symmetry pattern
of the spectra for small magnetizations is a characteristic
fingerprint of the 120◦ semiclassical states.

Finite-field case.— Here the ground state manifold is
generally larger since the classical constraint S∆ = H/2J
allows for non-coplanar configurations already at the
level of a single triangle. It is known51,52,53 however
that the coplanar states with the spins lying in the field-
plane have the largest number of soft modes and thus
must be selected by quantum or thermal fluctuations.
A subsequent selection which depends on the field takes
place within the field-plane for the orientation of the spin
triad52. It turns out that the most relevant GS’s in a fi-
nite field are the ones depicted in Figs. 15(b) and (c).61

For H < Hs/3 (cf. Fig. 15(b)) the relevant GS’s on a
triangle form a one-parameter family with one spin anti-
parallel to the field. It is important to note that, apart
from their difference in the directions of the three spins,
these configurations are spatially indistinguishable from
the 120◦ states of Fig. 15(a): They are both 3-sublattice
states and thus carry the same spatial multiplicity (i.e.
24 for the cuboctahedron and 60 for the icosidodecahe-
dron) and the same spatial symmetry (i.e., Eqs. (19) and
(20)). Quite similarly, the “quasi-collinear” configura-
tions of Fig. 15(c), which can be selected for H ≥ Hs/3,
have an “uud” spatial structure. Hence they share the
same spatial multiplicity and symmetry properties with
the M = Ms/3 Ising GS’s. Namely, there exist 9 and 36
“quasi-collinear” states for the cuboctahedron and the
icosidodecahedron respectively, and their spatial symme-
try is given already in Eqs. (5) and (12). We should note
here that the set of IR’s appearing in Eqs. (5) and (12)
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form a subset of the ones appearing in Eqs. (19) and (20)
respectively.62

According to the above, all types of semiclassical con-
figurations of Fig. 15 have the same set of spatial repre-
sentations, except the “quasi-collinear” states which do
not contain the A2g representation: At large magnetiza-
tions this level is pushed higher in energy and this seems
to confirm that it does not belong to the relevant towers
of states of the “quasi-collinear” classical states. More
generally, the fact that the same set of spatial IR’s ap-
pear in the low-energy spectra at all magnetizations signi-
fies that our previous semiclassical interpretation for the
zero-field case carries over for finite fields as well. Again,
one may ask for more stringent evidence by a compari-
son of the combined spatial+spin symmetry properties
of these finite-magnetization states. We have derived
these combined symmetries (not shown here) following
the same lines as in Appendix B, but it turns out that
the small size of the cuboctahedron together with the se-
vere splitting of the low-lying states do not allow for a
straightforward and thus definite identification of the rel-
evant towers of states as above. As we show below, this
will be possible for the much simpler case of the s > 1/2
XY model.

B. s > 1/2 XY model

Here we study the XY model (i.e. the Jz = 0 limit of
Eqs. (2)-(4)) on the cuboctahedron. The reason of doing
this is twofold. First because, in contrast to the Heisen-
berg point, the XY point exemplifies very evidently the
core idea of the simultaneous appearance of several tow-
ers of states due to the spatial degeneracy of the classical
GS’s. And second, to provide an additional interpreta-
tion of the Heisenberg spectra, since these can be thought
of as being adiabatically connected to the XY spectra but
split by the quantum fluctuations introduced by Jz.
We first consider the classical case with a magnetic

field perpendicular to the xy-plane. As above, the XY
Hamiltonian can be rewritten in terms of the three spins
si of each triangle ∆ and its total spin S∆ as (in units of
gµB = 1):

HXY
classical =

Jxy
2

∑

∆

(

S
2
∆⊥ −

3
∑

i=1

(

s
2
i⊥ +

2H

Jxy
siz

)

)

, (21)

where S2
∆⊥ ≡ S

2
∆x+S

2
∆y and similarly for s2i⊥. The lead-

ing term of Eq. (21) is minimized by taking S∆⊥ = 0 on
each triangle. The remaining terms require that we max-
imize both s

2
i⊥ and siz with the constraint s

2
i⊥ + s2iz =

s(s+1) (the balance between the two components is con-
trolled by the ratio 2H/Jxy). In zero-field this gives the
3-sublattice states where all triangles share the same spin
(xy) plane. The major difference with our previous anal-
ysis of the Heisenberg (classical) GS’s is that here a spin
plane (i.e. the xy plane) is selected explicitly from the
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FIG. 17: (Color online) Low-energy spectra of the XY model
on the s = 5/2 cuboctahedron. The arrow in the upper panel
indicates the set of Anderson towers of states (or rotational
bands). These are shown in finer energy resolution in the
lower panel in order to reveal their symmetry structure. The
latter is in full agreement with TableVI. Note the level cross-
ing between the two semiclassical families occurring slightly
below the M =Ms/3 field.

beginning (i.e., for zero field) and this gives a finite en-
ergy cost to non-coplanar configurations. A finite field
gives rise to a tilt of the three spins out of the xy plane
giving rise to the so-called “umbrella” states. It is clear
that both in zero and in finite field, the classical XY GS’s
have the same spatial multiplicity and spatial symmetry
properties (but not spin symmetry properties, see below)
with the set of coplanar 3-sublattice GS’s of the Heisen-
berg point.

Let us now consider the quantum-mechanical XY
model. For our demonstration purposes, it suffices to
consider the s = 5/2 case only (the s = 3/2 case is very
similar63). The low-energy spectrum is shown in the up-
per panel of Fig. 17. A number of spectral features are
revealed. First, in contrast to the Heisenberg case studied
above, the lowest-energy portion of the spectrum (indi-
cated by the arrow) is well isolated from higher excita-
tions and it comprises four distinct towers of states. This
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TABLE VI: XY point: Decomposition of semiclassical copla-
nar states into IR’s of G = C∞v×R (where R = Oh or Ih). N is
the number of IR’s for each sector of C∞v and is equal to the
dimensionality of the corresponding IR of C∞v (cf.Table VIII)
times the number of coplanar states in each family divided by
six (i.e., 1 for PΓ

ABC, 3 for PM
ABC, and 10 for RABC). The

details of the derivation are given in Appendix B.

Cuboc. Cuboc. Icosi.

(Sz, σv) PΓ
ABC(1× 6) N PM

ABC(3× 6) N RABC(10× 6) N

0,+ A1g 1 A1g,Eg 3 Ag,Au,Fg,Fu 10

0,− A2g 1 T2u 3 Ag,Au,Fg,Fu 10

1, 2, 4, . Eg 2 A1g,Eg,T2u 6 2Hg,2Hu 20

3, 6, 9, . A1g,A2g 2 A1g,Eg,T2u 6 2(Ag,Au,Fg,Fu) 20

multiplicity is a fingerprint of the spatial degeneracy of
the classical 3-sublattice states mentioned above. This
can be further substantiated by examining more closely
the symmetry structure of the excitations intervening in
these towers. To this end we zoom in on these towers
in the lower panel of Fig. 17. A simple inspection of the
spatial IR’s that appear in this panel reveals that they
are exactly the ones given by Eq. (19). Much stronger
evidence comes by examining the full spatial+spin sym-
metry structure of the lowest towers. Indeed, a closer
comparison to Table VI (derived in Appendix B) demon-
strates that there is a remarkable one-to-one correspon-
dence of each of the lowest towers with the classical fami-
lies which holds in almost the entire magnetization range.
We should emphasize here that each semiclassical state
shows a different and quite non-trivial symmetry pattern
which is in some sense a very characteristic fingerprint
of the state. For instance, the full content of 24 states
of Eq. (19) is recovered every three Sz sectors in the
lowest towers with the specific pattern of combined spa-
tial and spin IR’s given in Table VI. This remarkable
agreement between exact ED spectra and our symme-
try derivation is indeed a strong evidence that the lowest
towers of states can be thought of as renormalized semi-
classical 3-sublattice states.

Some additional remarks are in order here regarding
the energies of the two families of towers as revealed in
the lower panel of Fig. 17. We should first note that all
towers are expected to become degenerate in the classical
s ≫ 1 limit. Based on spectra with s = 3/2 (not shown
here), we find that the energy splittings within a tower
of each of the two families P

Γ
ABC and P

M
ABC diminishes

quickly on increasing s as expected, while at the same
time, the energy splitting between them remains sizable.
On the other hand, as a function of Sz (or field), there
is an interesting level crossing between the two families
somewhat below the M = Ms/3 magnetization plateau,
with the M family being more favorable below this point.
An understanding of the above level-crossing could arise
by employing for instance a semiclassical expansion for
the XY model in a field, in a similar fashion with what is

done for the Heisenberg model51,54, but such an analysis
is clearly beyond the scope of this paper.

V. SUMMARY

We have presented an extended study of the low-energy
physics of two existing magnetic molecule realizations
of the kagomé AFM on the sphere, the cuboctahedron
and the icosidodecahedron. Our ED results revealed
a number of generic spectral features which stem from
the corner-sharing topology of these clusters. Indeed, a
simple comparison to a finite-size s = 1/2 unfrustrated
magnet demonstrated that frustrated clusters manifest
a “bulk” of very dense low-energy excitations. We fo-
cused on two major aspects which are of general inter-
est but were particularly oriented toward the s = 5/2
Mo72Fe30 cluster: (i) the low-energy excitations above
the M = Ms/3 plateau and (ii) the low-lying spectra of
the Heisenberg model for s > 1/2.
For the M = Ms/3 plateau, we first demonstrated that

the s = 1/2 icosidodecahedron shows 36 low-lying ex-
citations which are adiabatically connected to collinear
“uud” Ising (GS’s), at the same time being well isolated
from higher levels by a relatively large energy gap. We
then argued, based on a complementary physical picture
which emerged from the derivation of an effective quan-
tum dimer model, that this s = 1/2 feature must be spe-
cial to the topology of the icosidodecahedron and that
it must survive for s = 5/2 as well. We also predicted
that the corresponding 36 low-lying plateau states of the
s = 5/2 icosidodecahedron consist of two “uud” families
(of 30 and 6 states respectively) which are separated by a
small diagonal energy splitting. This result can be con-
firmed by low-temperature specific heat measurements
at the M = Ms/3 regime (H ≃ 5.9 Tesla) of Mo72Fe30
and/or by an assessment of the associated missing en-
tropy.
In the second part, we showed exact diagonalization

spectra for the s > 1/2 Heisenberg cuboctahedron which
demonstrated that the dense low-lying excitation fea-
tures of the s = 1/2 case are present for s > 1/2 as
well, albeit with a striking spatial+spin symmetry pat-
tern. These spectra provide a semiclassical interpreta-
tion of the broad inelastic neutron scattering response
reported for Mo72Fe30. The main ingredient of this in-
terpretation is the simultaneous presence of several low-
energy towers of states or rotational bands at low energies
which originate from the large spatial multiplicity of the
classical Heisenberg ground states, and this is known to
be a generic feature of highly frustrated clusters. This
semiclassical interpretation was further corroborated by
an independent group theoretical analysis which demon-
strated that the striking symmetry pattern of the low-
lying excitations is indeed a characteristic fingerprint of
the classical coplanar ground states. The core idea of the
simultaneous presence of several rotational bands at low
energies due to the discrete classical degeneracy was fi-
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nally exemplified very evidently by a study of the s > 1/2
XY model.
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APPENDIX A: DEGENERATE PERTURBATION
THEORY AROUND THE ISING POINT

Here we describe some very general considerations
which greatly facilitate the classification of processes ap-
pearing in degenerate perturbation theory around the
Ising point. We consider corner sharing triangles struc-
tures with general spin s, and focus on the M = Ms/3
plateau. The ground-state Ising manifold consists of con-
figurations which maximize the number of extremum lo-
cal moments m10. At the plateau M = Ms/3 phase,
this consists of all configurations with two spins having
m = s and one with m = −s in each triangle. All pro-
cesses triggered by Hxy must preserve this constraint.
Let us denote by E0 the zero-th order energy and by
P0,Q0 = 1−P0 the projections onto and out of the Ising
manifold. We also designate by R the resolvent operator

R = (E0 −Q0H0Q0)
−1 . (A1)

The n-th order term of the effective Hamiltonian in the
Rayleigh-Schrödinger formulation56 reads

H(n)
eff = P0Hxy(RHxy)

n−1P0+ remaining terms , (A2)

where each of the “remaining terms” can be thought of

as a product combination of lower order terms H(k)
eff (with

k < n). This separation is useful when e.g. all processes
below some order n are constant since then, to order n,
it suffices to keep only the leading term of Eq. (A2). The
presence of P0’s in Eq. (A2) enforces all terms to flip
spins in such a way as to respect the “uud” constraint in
each triangular unit.
The derivation of Heff at any given order is greatly fa-

cilitated by noting that only “linked” processes should
be taken into account. These are interactions that are
“connected” in the following sense. Substituting Hxy in
Eq. (A2) gives different types of terms, each one carrying
a string of a given number of bond operators s−i s

+
j . We

differentiate between “linked” and “unlinked” interaction

.

R R R
1
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3
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..

FIG. 18: As above, filled circles denote spins withm = −s, re-
maining vertices havem = s. (a) All configurations of a single
triangle have the same energy to all orders. (b) The configu-
rational energy of two adjacent triangles depends only on the
shared spin, since all 4 states with the shared spin pointing up
have the same energy. (c) The contraction method is based
on the observation that E(R; s1, s2, s3) = E(R; s1).

terms depending on whether the set of all vertices appear-
ing in the corresponding string forms a connected (open
or closed) path in the lattice or not. The latter contain
nonlocal interactions between disconnected parts of the
lattice and therefore must be omitted56. Only connected
paths should therefore be considered. Further simplifica-
tions arise from the “uud” constraint as described below
for diagonal and off-diagonal processes.
Diagonal processes.— As explained in considerable de-

tail in Ref. 10 in the context of the pyrochlore lattice, all
diagonal processes up to a given order give an overall con-
stant energy shift, with the leading non constant terms
arising from processes along closed loop configurations.
As we explain below, similar results apply to the present
case of corner sharing triangles as well. The proof can be
demonstrated in a compact way by using the contraction
method of Bergman et al.10

Consider first all-order diagonal processes confined to a
given triangle. Clearly, the only physically distinct con-
figuration on this triangle is the “uud” one, since the
associated diagonal energy does not depend on which of
the three vertices the down spin resides (cf. Fig. 18(a)).
By sampling the energies of all triangles we end up with
an energy that is global, i.e., the same for all Ising states.
Hence all-order processes confined in a single triangle
give an overall constant energy shift and can thus be
neglected. We now consider all-order processes confined
to two adjacent triangles. Here, there are two physically
distinct classes of configurations (cf. Fig. 18(b)), depend-
ing on whether the shared spin points down (first state in
Fig. 18(b)) or up (remaining four states). Since all four
states with the shared spin pointing up are physically
equivalent, the energy is only a function of the shared
spin variable. By sampling again over the lattice we ob-
tain a global energy shift. Remarkably, these arguments
can be generalized to much broader cases by the contrac-
tion method exemplified in Fig. 18(c): Since permuting
the spin variables 2 and 3 results in a topologically equiv-
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FIG. 19: A fragment of the corner-sharing triangle lattice
with no closed loops. This is a Bethe lattice made of triangles,
known as Husimi cactus.
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FIG. 20: The thick solid line denotes a path corresponding
to a given term in the perturbation series. Only the alternat-
ing spin up-down configuration shown in (b) (which must be
closed) is amenable to an off-diagonal kinetic process.

alent state, knowing the value of s1 is enough, i.e.,

E(R; s1, s2, s3) = E(R; s1) , (A3)

where R designates all remaining spin variables. This
“contraction” can be continued with the next available
triangle inside the shaded area R, and so on. If this pro-
cess can be continued until we are left with a function of
a single vertex, then sampling this function over all spins
we obtain again a global energy shift. A non-constant
energy contribution may arise only when the contraction
process cannot be continued until the last spin variable.
This happens whenever the shaded area R of Fig. 18(c)
contains one or more closed loops, since none of the tri-
angles making up a loop is “contractible”. This leaves
us with the following quite general statement: All-order
processes confined to a fragment of the lattice with no
closed loops give an overall constant energy shift. The
most general form of such fragments is depicted in Fig. 19
and is recognized to be a Bethe lattice made of triangles,
known as Husimi cactus.
Hence, the lowest order diagonal processes come from

closed loops in the lattice. One should also remark that,
in contrast to off-diagonal processes (see below), the or-
der at which diagonal processes first appear is indepen-
dent of the spin s.
Off-diagonal processes.— Figure 20 shows schemati-

cally a given lattice path (solid thick line) with two par-
ticular configuration choices. All spins havem = s except
the ones indicated by filled circles with m = −s. By defi-
nition, only spins residing on this path may be flipped. In

TABLE VII: Degenerate perturbation theory calculations for
the off-diagonal kinetic amplitude t on alternating up-down
configurations around loops with L = 4, 6 and 10 sites, and
for various intrinsic spins s. The order in Hxy and the total
number of contributing processes are also given.

L 2s Order (Ls) t [Jzα
Ls] # of processes

4 1 2 -1.0 4

2 4 -1.0 36

3 6 -0.5625 400

4 8 -0.25 4 900

5 10 -0.09765625 63 504

6 12 -0.03515625 853 776

6 1 3 1.5 12

2 6 -0.88402469 900

3 9 0.25093125 94 080

4 12 -0.05637473 11 988 900

5 15 0.01106939 1 704 214 512

6 18 -0.00199964 260 453 217 024

8 1 4 -2.5 48

2 8 -0.93709194 45 360

3 12 -0.12770306 60 614 400

4 16 -0.01464521 114 144 030 000

10 1 5 +4.375 240

2 10 -1.0924858 3 855 600

off-diagonal processes at least one spin, say s0, is flipped
from m = ±s to m = ∓s. But, since the final state must
preserve the “uud” constraint in each triangle, flipping
s0 must be accommodated by a similar flip of the adja-
cent spins lying on the path, namely s−1 and s1. Simi-
larly, the spins at vertices 2 and 3 must also be flipped.
If, as drawn in Fig. 20(a), the initial configuration has
m3 = m4 = −s, then flipping 3 already violates the
“uud” constraint. It is also clear that if the path is open
at one end (or at both ends) the ending spin (or spins)
will be flipped at the final state, thus violating the “uud”
constraint on the adjacent triangle(s). Thus only closed,
connected paths with alternating up-down spins, such as
in Fig. 20(b) are amenable to an off-diagonal process.
The simplest possible paths are loops of even number of
spins L. Since flipping each spin requires 2s operations,
off-diagonal processes on a simple loop appear in order
αLs. An example was shown in Fig. 9 for the icosidodec-
ahedron. In Table VII we provide calculated numerical
values for the amplitude of such virtual processes around
loops with L = 4, 6, 8 and 10 sites and various values of
s. Starting from a given loop, one may also build pro-
cesses (and paths) of higher order by invoking adjacent
triangular units. An example for the icosidodecahedron
was the fifth order processes mentioned in Sec. III B 2.
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APPENDIX B: SYMMETRY PROPERTIES OF
THE 3-SUBLATTICE COPLANAR STATES

Here we give the details of the derivation of the symme-
try properties of the semiclassical 3-sublattice coplanar
states of Fig. 15(a). These are relevant for the Heisen-
berg model at H = 0 as well as the XY model (dis-
cussed in Sec. IVB) for both zero and finite fields. As
explained above, the spatial symmetry properties of the
states of Fig. 15(b) are the same as that of (a), and simi-
larly the spatial symmetry of the “quasi-collinear” states
of Fig. 15(c) is identical to that of the “uud” states given
in Eqs. (5) and (12). The derivation of the combined
spatial+spin properties of Fig. 15(b) and (c) are not of
our interest here but can be found easily following the
same steps as below.
We are using the following notation and conventions.

The groups of real space and spin space operations are
denoted respectively by R and L. In particular, R = Oh

for the cuboctahedron and Ih for the icosidodecahedron.
The full group R × L is designated by G. A stabilizer
Hc of a classical state |c〉 consists of elements h which
preserve |c〉 (i.e. h|c〉 = |c〉) and this will be either a
subgroup of R or a subgroup of G depending on whether
we are examining only the spatial or the full symmetry
properties. The elements of R, L and G are labeled by
r, l, g = r · l respectively, while their IR’s are denoted
as Dρ(r), Dλ(l), and D

γ(g) = D
ρ(r)⊗D

λ(l). Similarly,
their characters are denoted by χρ(r), χλ(l), and χγ(g =
r · l) = χρ(r) · χλ(l). Let us first discuss the spatial
symmetry and then the combined spatial+spin symmetry
structure of the 3-sublattice states.

1. Spatial symmetry of 3-sublattice states

As we discussed previously, each vertex three-coloring
|c〉 is in one-to-one correspondence with the states of
Fig. 15(a). Starting from a given |c〉 and applying all
elements r of R we generate an invariant vector space or
orbit O. The decomposition of O into IR’s D(ρ) of R is
given by the well known formula37

O(r) =
∑

ρ

mρD
ρ(r) , (B1)

mρ =
1

|R|
∑

r∈R

χρ(r)∗ Tr[O(r)] . (B2)

The matrix element Occ′(r) = 〈c|r|c′〉 is equal to one if r
belongs to the stabilizer Hc of |c〉 and vanishes otherwise.
Thus we may rewrite Eq. (B2) as

mρ =
1

|Hc|
∑

h∈Hc⊆R

χρ(h) , (B3)

where we made use of |R| = |O| · |Hc|. This relation
follows from the coset decomposition of R with respect
to Hc (each coset is in one-to-one correspondence with

the states |c′〉 of the orbit O). Employing (B3) to all
different orbits we obtain the symmetry properties of the
coplanar states.
Let us see now what happens for the cuboctahe-

dron and the icosidodecahedron separately. As discussed
above, the cuboctahedron has a total number of 24 vertex
three-colorings |c〉 = |ABC〉. Under Oh they form four in-
variant orbits of six colorings each. The first orbit, called
P

Γ
ABC consists of the six global permutations of the trans-

lationally invariant coloring depicted in Fig. 16(a). The
18 colorings that belong to the remaining three orbits
result from the first orbit by interchanging colors along
loops with two alternating colors. One such configuration
is shown in Fig. 16(b). Although these three orbits are
equivalent it is useful for the following discussion of the
full spatial+spin properties to treat them collectively as
a single one which we term P

M
ABC.

64 The decomposition
of the above orbits into IR’s of Oh was given in Eq. (19).
On the other hand the icosidodecahedron has 60 color-

ing states. Under Ih they form two orbits of 30 colorings
each. The first orbit consists of the 3 cyclic permuta-
tions (ABC,CAB,BCA) of 10 ABC states, while the sec-
ond orbit consists of the remaining 3 permutations (or
reflections) (BAC,CBA,ACB) of the same 10 states. Al-
though these two orbits are equivalent it is useful for the
discussion of the full spatial+spin properties (see below)
to treat them as a single one which we denote by RABC.
Its decomposition into IR’s of Ih was given in Eq. (20).

2. Spatial+spin symmetry of 3-sublattice states

We shall now go one step further and derive the
combined spatial+spin properties of the above states.
Namely, a decomposition similar to that of Eqs. (19) and
(20) but now in terms of IR’s D

γ of the full symmetry
group G = R × L of the Hamiltonian. The method has
been employed previously in the seminal works of Bernu
et al.34,35 and Lecheminant et al.3,36.
The recipe is quite analogous to the one we employed

above. Here however, by applying the elements of the
full group G on a given classical state we generate a con-
tinuous orbit O. All states contained in this orbit are
coplanar but their order parameter has all possible orien-
tations in spin space (O is a continuous “order parameter
space”). Otherwise, the equation giving the numbers mγ

(i.e. how many times is Dγ appearing in the decomposi-
tion of O into IR’s of G) is fully analogous to Eq. (B3)
and reads

mγ =
1

|Hc|
∑

h∈Hc⊆G

χγ(h), (B4)

where now χγ(h = r · l) = χρ(r) · χλ(l). For the identifi-
cation of Hc it is expedient to split the operations of the
space group R into the 3! sets Sabc, Scab, · · · , Scba defined
as follows. The first consists of elements which map |c〉
to itself. On the other hand, the elements of Scab map



20

TABLE VIII: Character table of C∞v (see e.g. Ref. 37). Here,
E denotes the identity, Rφ the set of U(1) rotations, and σv

the set of all vertical mirror planes. The IR’s C∞v are char-
acterized by |Sz|, and the “parity” under σv for Sz = 0.

|Sz|, σv E Rφ σv

0,+ 1 1 1

0,− 1 1 -1

n ≥ 1 2 2 cosnφ 0

TABLE IX: The numerical values of the integers Nabc, Ncab,
etc. defined in the text. Remaining IR’s or blank entries
correspond to vanishing values. We also give the order of the
corresponding stabilizers Hc ⊆ G.

Cuboc. Γ Cuboc. M Icosi.

(A1g,A2g,Eg) (A1g,Eg,T2u) (Ag,Au,Fg,Fu,Hg,Hu)

|Hc| 48 16 12

Nabc (8, 8,16) (8, 8, 8) (4, 4, 4, 4, 8, 8)

Ncab (8, 8,-8) (4, 4, 4, 4,-4,-4)

Nbca (8, 8,-8) (4, 4, 4, 4,-4,-4)

Nbac (8,-8, 0) (8, 8,-8)

Nacb (8,-8, 0)

Ncba (8,-8, 0)

|c〉 to its globally permuted (ABC) 7→ (CAB) version,
and similarly for the remaining sets. We also define the
following set of integer numbers

Nρ
abc =

∑

h∈Sabc

χρ(h), Nρ
cab =

∑

h∈Scab

χρ(h), etc . (B5)

These numbers depend on the transformation properties
of |c〉 under the spatial group R alone. The non-vanishing
ones are given in Table IX.
We should note here that one can make a choice of G

depending on the amount of information we seek. For
instance we may choose according to the symmetries we
implement in our exact diagonalizations. We may even
take L as the idenity, i.e. G = R. In the latter case we re-
cover Eq. (B3). The type and number of invariant vector
spaces in each case will be different and the symmetry
decomposition must be applied to each one separately,
but the corresponding results will be consistent with each
other.
Let us now apply the above to the zero-field Heisenberg

model and the XY model.

a. SU(2) point

Here we take L = SU(2) and λ is the total spin S
which is integer here. A single |c〉 generates the full set
of coplanar states for each family of the clusters. The
elements of Sbac, Scba, and Sacb can be combined with

π rotations of SU(2) and bring |c〉 back to itself. Thus
again |Hc| = |Sabc| + · · · + |Scba|. Using Eq. (B4) with
γ = (ρ, S) then

mρ,S =
[

Nρ
abcχ

(S)(0) +Nρ
cabχ

(S)(
2π

3
) +Nρ

bcaχ
(S)(

4π

3
)

+ (Nρ
bac +Nρ

acb +Nρ
cba)χ

(S)(π)
]

/|Hc| . (B6)

where37 χ(S)(φ) =
sin (S+ 1

2
)φ

sinφ/2 . Replacing the values of

Table IX for each family separately we obtain the sym-
metry structures given in Table V.

b. XY point

Here, we take L = C∞v which includes U(1) rotations
and the continuous set of vertical (i.e. containing the z-
axis) mirror planes. The IR’s of C∞v can be generally
labeled37 by a non-negative integer n or |Sz |, with an
additional label σv = ±1 for n = 0 which stands for the
parity under the mirror operation. Hence λ = (|Sz |, σv).
All IR’s for n = |Sz| 6= 0 are two-dimensional and consist
of pairs of Sz and −Sz basis vectors. The characters of
C∞v are given in Table VIII.
It suffices to select a single coloring state |c〉 since this

generates all coloring states for both clusters. The stabi-
lizer Hc can be found as follows. Each one of the sets Sabc,
Scab, etc. discussed above can be combined with one of
the elements of C∞v to give |c〉 again. For instance, an el-
ement of Scab can be combined with a U(1) spin rotation
of 2π/3. On the other hand, an element of Sbac can be
combined with a mirror plane containing the C-axis (i.e.
that of the spins “colored” as C). The set of all such com-
bined operations span Hc, i.e. |Hc| = |Sabc|+ . . .+ |Sbac|.
Using Eq. (B4) with γ = (ρ, λ) then

mρ,λ = [Nρ
abcχ

λ(E) +Nρ
cabχ

λ(
2π

3
) +Nρ

bcaχ
λ(

4π

3
)

+(Nρ
bac +Nρ

acb +Nρ
cba)χ

λ(σv)]/|Hc| . (B7)

Replacing the values of Table IX and the characters χλ

from Table VIII for each family separately we obtain the
symmetry structures given in Table VI. According to this
table, the symmetry pattern repeats itself every three
Sz sectors. In particular, the full set of spatial IR’s of
Eqs. (19) and (20) is contained in any triad of subsequent
Sz sectors. As can be seen from the above relations,
this periodic pattern stems from the 120◦ 3-sublattice
symmetry structure of the coplanar states (the character
χλ(φ) ∼ cos (nφ) (with φ = 0, 2π/3, 4π/3) has a period
of n = 3).
In connection to a remark above, it is clear that we

could have chosen here L = U(1) instead of C∞v. The
corresponding stabilizer would then obviously be differ-
ent from the above since none of the combinations of Sbac,
Sacb and Scba with U(1) rotations can bring |c〉 to itself.
Nevertheless, the results from the two different choices of
L are consistent with each other.
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We should finally emphasize a non-trivial feature which
appears in both Tables VI and V and holds for each fam-
ily separately. Namely that the total numbermλ of states
(counting the degeneracy dρ of spatial IR’s) for a given
IR λ of the spin group L is equal to the dimensional-
ity dλ of this IR (i.e. (2S + 1) for the Heisenberg case,

see Table VIII for the XY case) times the ratio |R|/|Hc|.
This feature can be proven by group theory alone using
mλ =

∑

ρ dρ mρ,λ, Eq. (B4) and the so-called character

orthogonality relation37.
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M. Axenovich, J. Schnack, P. C. Canfield, S. Bud’ko, and

N. Harison, Chem. Phys. Chem. 2, 517 (2001).
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