16,555 research outputs found

    Random matrices, log-gases and Holder regularity

    Full text link
    The Wigner-Dyson-Gaudin-Mehta conjecture asserts that the local eigenvalue statistics of large real and complex Hermitian matrices with independent, identically distributed entries are universal in a sense that they depend only on the symmetry class of the matrix and otherwise are independent of the details of the distribution. We present the recent solution to this half-century old conjecture. We explain how stochastic tools, such as the Dyson Brownian motion, and PDE ideas, such as De Giorgi-Nash-Moser regularity theory, were combined in the solution. We also show related results for log-gases that represent a universal model for strongly correlated systems. Finally, in the spirit of Wigner's original vision, we discuss the extensions of these universality results to more realistic physical systems such as random band matrices.Comment: Proceedings of ICM 201

    Developments in Random Matrix Theory

    Full text link
    In this preface to the Journal of Physics A, Special Edition on Random Matrix Theory, we give a review of the main historical developments of random matrix theory. A short summary of the papers that appear in this special edition is also given.Comment: 22 pages, Late

    Eigenvalue distributions of large Euclidean random matrices for waves in random media

    Full text link
    We study probability distributions of eigenvalues of Hermitian and non-Hermitian Euclidean random matrices that are typically encountered in the problems of wave propagation in random media.Comment: 29 pages, 10 figure

    Random matrix theory and symmetric spaces

    Full text link
    In this review we discuss the relationship between random matrix theories and symmetric spaces. We show that the integration manifolds of random matrix theories, the eigenvalue distribution, and the Dyson and boundary indices characterizing the ensembles are in strict correspondence with symmetric spaces and the intrinsic characteristics of their restricted root lattices. Several important results can be obtained from this identification. In particular the Cartan classification of triplets of symmetric spaces with positive, zero and negative curvature gives rise to a new classification of random matrix ensembles. The review is organized into two main parts. In Part I the theory of symmetric spaces is reviewed with particular emphasis on the ideas relevant for appreciating the correspondence with random matrix theories. In Part II we discuss various applications of symmetric spaces to random matrix theories and in particular the new classification of disordered systems derived from the classification of symmetric spaces. We also review how the mapping from integrable Calogero--Sutherland models to symmetric spaces can be used in the theory of random matrices, with particular consequences for quantum transport problems. We conclude indicating some interesting new directions of research based on these identifications.Comment: 161 pages, LaTeX, no figures. Revised version with major additions in the second part of the review. Version accepted for publication on Physics Report

    Spectral behavior of preconditioned non-Hermitian multilevel block Toeplitz matrices with matrix-valued symbol

    Full text link
    This note is devoted to preconditioning strategies for non-Hermitian multilevel block Toeplitz linear systems associated with a multivariate Lebesgue integrable matrix-valued symbol. In particular, we consider special preconditioned matrices, where the preconditioner has a band multilevel block Toeplitz structure, and we complement known results on the localization of the spectrum with global distribution results for the eigenvalues of the preconditioned matrices. In this respect, our main result is as follows. Let Ik:=(−π,π)kI_k:=(-\pi,\pi)^k, let Ms\mathcal M_s be the linear space of complex s×ss\times s matrices, and let f,g:Ik→Msf,g:I_k\to\mathcal M_s be functions whose components fij, gij:Ik→C, i,j=1,…,s,f_{ij},\,g_{ij}:I_k\to\mathbb C,\ i,j=1,\ldots,s, belong to L∞L^\infty. Consider the matrices Tn−1(g)Tn(f)T_n^{-1}(g)T_n(f), where n:=(n1,…,nk)n:=(n_1,\ldots,n_k) varies in Nk\mathbb N^k and Tn(f),Tn(g)T_n(f),T_n(g) are the multilevel block Toeplitz matrices of size n1⋯nksn_1\cdots n_ks generated by f,gf,g. Then {Tn−1(g)Tn(f)}n∈Nk∼λg−1f\{T_n^{-1}(g)T_n(f)\}_{n\in\mathbb N^k}\sim_\lambda g^{-1}f, i.e. the family of matrices {Tn−1(g)Tn(f)}n∈Nk\{T_n^{-1}(g)T_n(f)\}_{n\in\mathbb N^k} has a global (asymptotic) spectral distribution described by the function g−1fg^{-1}f, provided gg possesses certain properties (which ensure in particular the invertibility of Tn−1(g)T_n^{-1}(g) for all nn) and the following topological conditions are met: the essential range of g−1fg^{-1}f, defined as the union of the essential ranges of the eigenvalue functions λj(g−1f), j=1,…,s\lambda_j(g^{-1}f),\ j=1,\ldots,s, does not disconnect the complex plane and has empty interior. This result generalizes the one obtained by Donatelli, Neytcheva, Serra-Capizzano in a previous work, concerning the non-preconditioned case g=1g=1. The last part of this note is devoted to numerical experiments, which confirm the theoretical analysis and suggest the choice of optimal GMRES preconditioning techniques to be used for the considered linear systems.Comment: 18 pages, 26 figure
    • …
    corecore