2,571 research outputs found

    The Error-Pattern-Correcting Turbo Equalizer

    Full text link
    The error-pattern correcting code (EPCC) is incorporated in the design of a turbo equalizer (TE) with aim to correct dominant error events of the inter-symbol interference (ISI) channel at the output of its matching Viterbi detector. By targeting the low Hamming-weight interleaved errors of the outer convolutional code, which are responsible for low Euclidean-weight errors in the Viterbi trellis, the turbo equalizer with an error-pattern correcting code (TE-EPCC) exhibits a much lower bit-error rate (BER) floor compared to the conventional non-precoded TE, especially for high rate applications. A maximum-likelihood upper bound is developed on the BER floor of the TE-EPCC for a generalized two-tap ISI channel, in order to study TE-EPCC's signal-to-noise ratio (SNR) gain for various channel conditions and design parameters. In addition, the SNR gain of the TE-EPCC relative to an existing precoded TE is compared to demonstrate the present TE's superiority for short interleaver lengths and high coding rates.Comment: This work has been submitted to the special issue of the IEEE Transactions on Information Theory titled: "Facets of Coding Theory: from Algorithms to Networks". This work was supported in part by the NSF Theoretical Foundation Grant 0728676

    Algoritmos eficientes de búsqueda de códigos cíclicos y cíclicos acortados correctores de ráfagas múltiples de errores

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 11-09-2014Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu

    Algoritmos eficientes de búsqueda de códigos cíclicos y cíclicos acortados correctores de ráfagas de errores

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 30/01/2013Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEUniversidad Complutense de MadridAgencia Española de Cooperación Internacional para el Desarrollo (AECID)unpu

    Versatile Error-Control Coding Systems

    Get PDF
    $NC research reported in this thesis is in the field of error-correcting codes, which has evolved as a very important branch of information theory. The main use of error-correcting codes is to increase the reliability of digital data transmitted through a noisy environment. There are, sometimes, alternative ways of increasing the reliability of data transmission, but coding methods are now competitive in cost and complexity in many cases because of recent advances in technology. The first two chapters of this thesis introduce the subject of error-correcting codes, review some of the published literature in this field and discuss the advan­tages of various coding techniques. After presenting linear block codes attention is from then on concentrated on cyclic codes, which is the subject of Chapter 3. The first part of Chapter 3 presents the mathemati­cal background necessary for the study of cyclic codes and examines existing methods of encoding and their practical implementation. In the second part of Chapter 3 various ways of decoding cyclic codes are studied and from these considerations, a general decoder for cyclic codes is devised and is presented in Chapter 4. Also, a review of the principal classes of cyclic codes is presented. Chapter 4 describes an experimental system constructed for measuring the performance of cyclic codes initially RC5GI5SCD by random errors and then by bursts of errors. Simulated channels are used both for random and burst errors. A computer simulation of the whole system was made in order to verify the accuracy of the experimental results obtained. Chapter 5 presents the various results obtained with the experimental system and by computer simulation, which allow a comparison of the efficiency of various cyclic codes to be made. Finally, Chapter 6 summarises and dis­cusses the main results of the research and suggests interesting points for future investigation in the area. The main objective of this research is to contribute towards the solution of a fairly wide range of problems arising in the design of efficient coding schemes for practical applications; i.e. a study of coding from an engineering point of view

    Challenges and Some New Directions in Channel Coding

    Get PDF
    Three areas of ongoing research in channel coding are surveyed, and recent developments are presented in each area: spatially coupled Low-Density Parity-Check (LDPC) codes, nonbinary LDPC codes, and polar coding.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/JCN.2015.00006
    • …
    corecore