2,589 research outputs found

    Design of Touch Screen Controller IC for Transparent Fingerprint Sensor

    Get PDF
    Department of Electrical EngineeringA design of system architecture and analog-front-end (AFE) with high SNR and high frame rate for mutual capacitive touch screen with multiple electrodes is presented. Firstly, a differential continuous-mode parallel operation architecture (DCPA) is proposed for large-sized TSP. The proposed architecture achieves a high product of signal-to-noise ratio (SNR) and frame rate, which is a requirement of ROIC for large-sized TSP. DCPA is accomplished by using the proposed differential sensing method with a parallel architecture in a continuous-mode. A continuous-type differential charge amplifier removes the common-mode noise component, and reduces the self-noise by the band-pass filtering effect of the continuous-mode charge amplifier. In addition, the differential parallel architecture cancels the timing skew problem caused by the continuous-mode parallel operation and effectively enhances the power spectrum density of the signal. The proposed ROIC was fabricated using a 0.18-um CMOS process and occupied an active area of 1.25 mm2. The proposed system achieved a 72 dB SNR and 240 Hz frame rate with a 32 channel TX by 10 channel RX mutual capacitive TSP. Moreover, the proposed differential-parallel architecture demonstrated higher immunity to lamp noise and display noise. The proposed system consumed 42.5 mW with a 3.3-V supply. Secondly, readout IC (ROIC) with a differential coded multiple signaling method (DCMS) is proposed to detect an atto-farad capacitance difference for fingerprint recognition in fingerprint TSP. A readout IC with high SNR and fast frame rate are required in the fingerprint recognition. However, the capacitance difference by the ridge and valley of the fingerprint is very small, so that the signal-to-noise ratio is very low. In addition, it takes long time to scan whole fingerprint TSP with multiple electrodes. A fully differential architecture with differential signaling is proposed to detect the low capacitance difference in fingerprint TSP. The internal noise generated is minimized by 2nd fully differential operational amplifier and external noise is eliminated by a lock-in sensing structure. In addition, DCMS reduces an AC offset and enhances a higher product of SNR and frame rate in multiple channels. The proposed architectures can distinguish a 50-atto-farad which is a capacitance difference resulted from the ridges and valley of the finger under the 0.3T glass. The total scan time for 42 ?? 42 fingerprint TSP is less than 21 ms and the power consumption is below 20 mW at 3.3 V supply voltage. IC has been fabricated using a 0.18 ??m standard CMOS process.ope

    Low-Noise Energy-Efficient Sensor Interface Circuits

    Full text link
    Today, the Internet of Things (IoT) refers to a concept of connecting any devices on network where environmental data around us is collected by sensors and shared across platforms. The IoT devices often have small form factors and limited battery capacity; they call for low-power, low-noise sensor interface circuits to achieve high resolution and long battery life. This dissertation focuses on CMOS sensor interface circuit techniques for a MEMS capacitive pressure sensor, thermopile array, and capacitive microphone. Ambient pressure is measured in the form of capacitance. This work propose two capacitance-to-digital converters (CDC): a dual-slope CDC employs an energy efficient charge subtraction and dual comparator scheme; an incremental zoom-in CDC largely reduces oversampling ratio by using 9b zoom-in SAR, significantly improving conversion energy. An infrared gesture recognition system-on-chip is then proposed. A hand emits infrared radiation, and it forms an image on a thermopile array. The signal is amplified by a low-noise instrumentation chopper amplifier, filtered by a low-power 30Hz LPF to remove out-band noise including the chopper frequency and its harmonics, and digitized by an ADC. Finally, a motion history image based DSP analyzes the waveform to detect specific hand gestures. Lastly, a microphone preamplifier represents one key challenge in enabling voice interfaces, which are expected to play a dominant role in future IoT devices. A newly proposed switched-bias preamplifier uses switched-MOSFET to reduce 1/f noise inherently.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137061/1/chaseoh_1.pd

    An auto-balancing capacitance-to-pulse-width converter for capacitive sensors

    Get PDF
    A novel auto-balancing capacitance-to-pulse- width converter (CPC) that uses sinusoidal excitation, and operates in a closed-loop configuration, is presented in this paper. Unlike most of the existing CPCs, the proposed interface circuit is compatible with both single-element and differential capacitive sensors. In addition, it provides a pulse-width modulated (PWM) signal which can easily be digitized using a counter. From this PWM signal, a ratio output is derived when a single-element sensor is interfaced, and a ratiometric output is obtained for a differential sensor.The authors would like to thank the Department of Science and Technology (DST), Govt. of India, for its financial assistance (Grant Number SERB/F/4573/2016-17) in carrying out the research activities presented in this paper.Postprint (published version

    A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems

    Get PDF
    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 ??m complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.ope

    Force feedback linearization for higher-order electromechanical sigma-delta modulators.

    No full text
    Abstract A higher-order electromechanical sigma–delta modulator can greatly improve the signal-to-noise ratio compared with a second-order loop that only uses the sensing element as a loop filter. However, the electrostatic force feedback on the proof mass is inherently nonlinear, which will produce harmonics in the output spectrum and limits the total signal-to-noise and distortion ratio. High performance inertial sensors, which use sigma–delta modulators as a closed-loop control system, have strict requirements on the output signal distortion. In this paper, nonlinear effects from the force feedback and pick-off circuits are analysed and a strategy for force feedback linearization is put forward which can considerably improve the signal-to-noise and distortion ratio. A PCB prototype of a fifth-order electromechanical modulator with a bulk micromachined accelerometer was used to demonstrate the concept

    Capacitive Touch Panel with Low Sensitivity to Water Drop employing Mutual-coupling Electrical Field Shaping Technique

    Get PDF
    This paper proposes a novel method to reduce the water interference on the touch panel based on mutual-capacitance sensing in human finger detection. As the height of a finger (height >10 mm) is far larger than that of a water-drop (height 10 mm) and low in the low-height space (height <1 mm), the sensing cell can be designed to distinguish the finger from the water-drop. To achieve this density distribution of the electrical field, the mutual-coupling electrical field shaping (MEFS) technique is employed to build the sensing cell. The drawback of the MEFS sensing cell is large parasitic capacitance, which can be overcome by a readout IC with low sensitivity to parasitic capacitance. Experiments show that the output of the IC with the MEFS sensing cell is 1.11 V when the sensing cell is touched by the water-drop and 1.23 V when the sensing cell is touched by the finger, respectively. In contrast, the output of the IC with the traditional sensing cell is 1.32 and 1.33 V when the sensing cell is touched by the water-drop and the finger, respectively. This demonstrates that the MEFS sensing cell can better distinguish the finger from the water-drop than the traditional sensing cell does.National Research Foundation (NRF)Accepted versionThis work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61771363, in part by the China Scholarship Council (CSC) under Grant 201706960042, and in part by the National Research Foundation of Singapore under Grant NRF-CRP11-2012-01

    Remote capacitive sensing in two-dimension quantum-dot arrays

    Get PDF
    We investigate gate-defined quantum dots in silicon on insulator nanowire field-effect transistors fabricated using a foundry-compatible fully-depleted silicon-on-insulator (FD-SOI) process. A series of split gates wrapped over the silicon nanowire naturally produces a 2×n2\times n bilinear array of quantum dots along a single nanowire. We begin by studying the capacitive coupling of quantum dots within such a 2×\times2 array, and then show how such couplings can be extended across two parallel silicon nanowires coupled together by shared, electrically isolated, 'floating' electrodes. With one quantum dot operating as a single-electron-box sensor, the floating gate serves to enhance the charge sensitivity range, enabling it to detect charge state transitions in a separate silicon nanowire. By comparing measurements from multiple devices we illustrate the impact of the floating gate by quantifying both the charge sensitivity decay as a function of dot-sensor separation and configuration within the dual-nanowire structure.Comment: 9 pages, 3 figures, 35 cites and supplementar
    corecore