20 research outputs found

    Even-cycle decompositions of graphs with no odd-K4K_4-minor

    Full text link
    An even-cycle decomposition of a graph G is a partition of E(G) into cycles of even length. Evidently, every Eulerian bipartite graph has an even-cycle decomposition. Seymour (1981) proved that every 2-connected loopless Eulerian planar graph with an even number of edges also admits an even-cycle decomposition. Later, Zhang (1994) generalized this to graphs with no K5K_5-minor. Our main theorem gives sufficient conditions for the existence of even-cycle decompositions of graphs in the absence of odd minors. Namely, we prove that every 2-connected loopless Eulerian odd-K4K_4-minor-free graph with an even number of edges has an even-cycle decomposition. This is best possible in the sense that `odd-K4K_4-minor-free' cannot be replaced with `odd-K5K_5-minor-free.' The main technical ingredient is a structural characterization of the class of odd-K4K_4-minor-free graphs, which is due to Lov\'asz, Seymour, Schrijver, and Truemper.Comment: 17 pages, 6 figures; minor revisio

    Idealness and 2-resistant sets

    Get PDF
    A subset of the unit hypercube {0,1}n is cube-ideal if its convex hull is described by hypercube and generalized set covering inequalities. In this note, we study sets S⊆{0,1}n such that, for any subset X⊆{0,1}n of cardinality at most 2, S∪X is cube-ideal

    Displaying blocking pairs in signed graphs

    Get PDF
    A signed graph is a pair (G, S) where G is a graph and S is a subset of the edges of G. A circuit of G is even (resp. odd) if it contains an even (resp. odd) number of edges of S. A blocking pair of (G, S) is a pair of vertices s, t such that every odd circuit intersects at least one of s or t. In this paper, we characterize when the blocking pairs of a signed graph can be represented by 2-cuts in an auxiliary graph. We discuss the relevance of this result to the problem of recognizing even cycle matroids and to the problem of characterizing signed graphs with no odd-K5 minor

    Idealness of k-wise intersecting families

    Get PDF
    A clutter is k-wise intersecting if every k members have a common element, yet no element belongs to all members. We conjecture that, for some integer k ≥ 4, every k-wise intersecting clutter is non-ideal. As evidence for our conjecture, we prove it for k = 4 for the class of binary clutters. Two key ingredients for our proof are Jaeger’s 8-flow theorem for graphs, and Seymour’s characterization of the binary matroids with the sums of circuits property. As further evidence for our conjecture, we also note that it follows from an unpublished conjecture of Seymour from 1975. We also discuss connections to the chromatic number of a clutter, projective geometries over the two-element field, uniform cycle covers in graphs, and quarter-integral packings of value two in ideal clutters

    Odd Paths, Cycles and TT-joins: Connections and Algorithms

    Full text link
    Minimizing the weight of an edge set satisfying parity constraints is a challenging branch of combinatorial optimization as witnessed by the binary hypergraph chapter of Alexander Schrijver's book ``Combinatorial Optimization'' (Chapter 80). This area contains relevant graph theory problems including open cases of the Max Cut problem, or some multiflow problems. We clarify the interconnections of some problems and establish three levels of difficulties. On the one hand, we prove that the Shortest Odd Path problem in an undirected graph without cycles of negative total weight and several related problems are NP-hard, settling a long-standing open question asked by Lov\'asz (Open Problem 27 in Schrijver's book ``Combinatorial Optimization''. On the other hand, we provide a polynomial-time algorithm to the closely related and well-studied Minimum-weight Odd {s,t}\{s,t\}-Join problem for non-negative weights, whose complexity, however, was not known; more generally, we solve the Minimum-weight Odd TT-Join problem in FPT time when parameterized by ∣T∣|T|. If negative weights are also allowed, then finding a minimum-weight odd {s,t}\{s,t\}-join is equivalent to the Minimum-weight Odd TT-Join problem for arbitrary weights, whose complexity is only conjectured to be polynomially solvable. The analogous problems for digraphs are also considered.Comment: 24 pages, 2 figure

    Odd-Minors I: Excluding small parity breaks

    Full text link
    Given a graph class~C\mathcal{C}, the C\mathcal{C}-blind-treewidth of a graph~GG is the smallest integer~kk such that~GG has a tree-decomposition where every bag whose torso does not belong to~C\mathcal{C} has size at most~kk. In this paper we focus on the class~B\mathcal{B} of bipartite graphs and the class~P\mathcal{P} of planar graphs together with the odd-minor relation. For each of the two parameters, B\mathcal{B}-blind-treewidth and (B∪P){(\mathcal{B}\cup\mathcal{P})}-blind-treewidth, we prove an analogue of the celebrated Grid Theorem under the odd-minor relation. As a consequence we obtain FPT-approximation algorithms for both parameters. We then provide FPT-algorithms for \textsc{Maximum Independent Set} on graphs of bounded B\mathcal{B}-blind-treewidth and \textsc{Maximum Cut} on graphs of bounded (B∪P){(\mathcal{B}\cup\mathcal{P})}-blind-treewidth

    Faster approximation schemes and parameterized algorithms on (odd-)H-minor-free graphs

    Get PDF
    AbstractWe improve the running time of the general algorithmic technique known as Baker’s approach (1994) [1] on H-minor-free graphs from O(nf(|H|)) to O(f(|H|)nO(1)). The numerous applications include, e.g. a 2-approximation for coloring and PTASes for various problems such as dominating set and max-cut, where we obtain similar improvements.On classes of odd-minor-free graphs, which have gained significant attention in recent time, we obtain a similar acceleration for a variant of the structural decomposition theorem proved by Demaine et al. (2010) [20]. We use these algorithms to derive faster 2-approximations; furthermore, we present the first PTASes and subexponential FPT-algorithms for independent set and vertex cover on these graph classes using a novel dynamic programming technique.We also introduce a technique to derive (nearly) subexponential parameterized algorithms on H-minor-free graphs. Our technique applies, in particular, to problems such as Steiner tree, (directed) subgraph with a property, (directed) longest path, and (connected/independent) dominating set, on some or all proper minor-closed graph classes. We obtain as a corollary that all problems with a minor-monotone subexponential kernel and amenable to our technique can be solved in subexponential FPT-time onH-minor free graphs. This results in a general methodology for subexponential parameterized algorithms outside the framework of bidimensionality

    From coordinate subspaces over finite fields to ideal multipartite uniform clutters

    Full text link
    Take a prime power qq, an integer n≥2n\geq 2, and a coordinate subspace S⊆GF(q)nS\subseteq GF(q)^n over the Galois field GF(q)GF(q). One can associate with SS an nn-partite nn-uniform clutter C\mathcal{C}, where every part has size qq and there is a bijection between the vectors in SS and the members of C\mathcal{C}. In this paper, we determine when the clutter C\mathcal{C} is ideal, a property developed in connection to Packing and Covering problems in the areas of Integer Programming and Combinatorial Optimization. Interestingly, the characterization differs depending on whether qq is 2,42,4, a higher power of 22, or otherwise. Each characterization uses crucially that idealness is a minor-closed property: first the list of excluded minors is identified, and only then is the global structure determined. A key insight is that idealness of C\mathcal{C} depends solely on the underlying matroid of SS. Our theorems also extend from idealness to the stronger max-flow min-cut property. As a consequence, we prove the Replication and τ=2\tau=2 Conjectures for this class of clutters.Comment: 32 pages, 6 figure

    Packing odd TT-joins with at most two terminals

    Get PDF
    Take a graph GG, an edge subset Σ⊆E(G)\Sigma\subseteq E(G), and a set of terminals T⊆V(G)T\subseteq V(G) where ∣T∣|T| is even. The triple (G,Σ,T)(G,\Sigma,T) is called a signed graft. A TT-join is odd if it contains an odd number of edges from Σ\Sigma. Let ν\nu be the maximum number of edge-disjoint odd TT-joins. A signature is a set of the form Σ△δ(U)\Sigma\triangle \delta(U) where U⊆V(G)U\subseteq V(G) and ∣U∩T)|U\cap T) is even. Let τ\tau be the minimum cardinality a TT-cut or a signature can achieve. Then ν≤τ\nu\leq \tau and we say that (G,Σ,T)(G,\Sigma,T) packs if equality holds here. We prove that (G,Σ,T)(G,\Sigma,T) packs if the signed graft is Eulerian and it excludes two special non-packing minors. Our result confirms the Cycling Conjecture for the class of clutters of odd TT-joins with at most two terminals. Corollaries of this result include, the characterizations of weakly and evenly bipartite graphs, packing two-commodity paths, packing TT-joins with at most four terminals, and a new result on covering edges with cuts.Comment: extended abstract appeared in IPCO 2014 (under the different title "the cycling property for the clutter of odd st-walks"
    corecore