8 research outputs found

    Probabilistic Reasoning across the Causal Hierarchy

    Full text link
    We propose a formalization of the three-tier causal hierarchy of association, intervention, and counterfactuals as a series of probabilistic logical languages. Our languages are of strictly increasing expressivity, the first capable of expressing quantitative probabilistic reasoning -- including conditional independence and Bayesian inference -- the second encoding do-calculus reasoning for causal effects, and the third capturing a fully expressive do-calculus for arbitrary counterfactual queries. We give a corresponding series of finitary axiomatizations complete over both structural causal models and probabilistic programs, and show that satisfiability and validity for each language are decidable in polynomial space.Comment: AAAI-2

    A Topological Perspective on Causal Inference

    Full text link
    This paper presents a topological learning-theoretic perspective on causal inference by introducing a series of topologies defined on general spaces of structural causal models (SCMs). As an illustration of the framework we prove a topological causal hierarchy theorem, showing that substantive assumption-free causal inference is possible only in a meager set of SCMs. Thanks to a known correspondence between open sets in the weak topology and statistically verifiable hypotheses, our results show that inductive assumptions sufficient to license valid causal inferences are statistically unverifiable in principle. Similar to no-free-lunch theorems for statistical inference, the present results clarify the inevitability of substantial assumptions for causal inference. An additional benefit of our topological approach is that it easily accommodates SCMs with infinitely many variables. We finally suggest that the framework may be helpful for the positive project of exploring and assessing alternative causal-inductive assumptions.Comment: NeurIPS 202

    Model testing for causal models

    Get PDF
    Finding cause-effect relationships is the central aim of many studies in the physical, behavioral, social and biological sciences. We consider two well-known mathematical causal models: Structural equation models and causal Bayesian networks. When we hypothesize a causal model, that model often imposes constraints on the statistics of the data collected. These constraints enable us to test or falsify the hypothesized causal model. The goal of our research is to develop efficient and reliable methods to test a causal model or distinguish between causal models using various types of constraints. For linear structural equation models, we investigate the problem of generating a small number of constraints in the form of zero partial correlations, providing an efficient way to test hypothesized models. We study linear structural equation models with correlated errors focusing on the graphical aspects of the models. We provide a set of local Markov properties and prove that they are equivalent to the global Markov property. For causal Bayesian networks, we study equality and inequality constraints imposed on data and investigate a way to use these constraints for model testing and selection. For equality constraints, we formulate an implicitization problem and show how we may reduce the complexity of the problem. We also study the algebraic structure of the equality constraints. For inequality constraints, we present a class of inequality constraints on both nonexperimental and interventional distributions

    A Characterization of Interventional Distributions in Semi-Markovian Causal Models

    No full text
    We offer a complete characterization of the set of distributions that could be induced by local interventions on variables governed by a causal Bayesian network of unknown structure, in which some of the variables remain unmeasured. We show that such distributions are constrained by a simply formulated set of inequalities, from which bounds can be derived on causal effects that are not directly measured in randomized experiments
    corecore