1,153 research outputs found

    On Binary And Regular Matroids Without Small Minors

    Get PDF
    The results of this dissertation consist of excluded-minor results for Binary Matroids and excluded-minor results for Regular Matroids. Structural theorems on the relationship between minors and k-sums of matroids are developed here in order to provide some of these characterizations. Chapter 2 of the dissertation contains excluded-minor results for Binary Matroids. The first main result of this dissertation is a characterization of the internally 4-connected binary matroids with no minor that is isomorphic to the cycle matroid of the prism+e graph. This characterization generalizes results of Mayhew and Royle [18] for binary matroids and results of Dirac [8] and Lovász [15] for graphs. The results of this chapter are then extended from the class of internally 4-connected matroids to the class of 3-connected matroids. Chapter 3 of the dissertation contains the second main result, a decomposition theorem for regular matroids without certain minors. This decomposition theorem is used to obtain excluded-minor results for Regular Matroids. Wagner, Lovász, Oxley, Ding, Liu, and others have characterized many classes of graphs that are H-free for graphs H with at most twelve edges (see [7]). We extend several of these excluded-minor characterizations to regular matroids in Chapter 3. We also provide characterizations of regular matroids excluding several graphic matroids such as the octahedron, cube, and the Möbius Ladder on eight vertices. Both theoretical and computer-aided proofs of the results of Chapters 2 and 3 are provided in this dissertation

    Displaying blocking pairs in signed graphs

    Get PDF
    A signed graph is a pair (G, S) where G is a graph and S is a subset of the edges of G. A circuit of G is even (resp. odd) if it contains an even (resp. odd) number of edges of S. A blocking pair of (G, S) is a pair of vertices s, t such that every odd circuit intersects at least one of s or t. In this paper, we characterize when the blocking pairs of a signed graph can be represented by 2-cuts in an auxiliary graph. We discuss the relevance of this result to the problem of recognizing even cycle matroids and to the problem of characterizing signed graphs with no odd-K5 minor

    Polytopality and Cartesian products of graphs

    Full text link
    We study the question of polytopality of graphs: when is a given graph the graph of a polytope? We first review the known necessary conditions for a graph to be polytopal, and we provide several families of graphs which satisfy all these conditions, but which nonetheless are not graphs of polytopes. Our main contribution concerns the polytopality of Cartesian products of non-polytopal graphs. On the one hand, we show that products of simple polytopes are the only simple polytopes whose graph is a product. On the other hand, we provide a general method to construct (non-simple) polytopal products whose factors are not polytopal.Comment: 21 pages, 10 figure

    A characterization of some graph classes using excluded minors

    Get PDF

    The Weisfeiler-Leman Dimension of Planar Graphs is at most 3

    Full text link
    We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively. First we show that, for dimension 3 and higher, the WL-algorithm correctly tests isomorphism of graphs in a minor-closed class whenever it determines the orbits of the automorphism group of any arc-colored 3-connected graph belonging to this class. Then we prove that, apart from several exceptional graphs (which have WL-dimension at most 2), the individualization of two correctly chosen vertices of a colored 3-connected planar graph followed by the 1-dimensional WL-algorithm produces the discrete vertex partition. This implies that the 3-dimensional WL-algorithm determines the orbits of a colored 3-connected planar graph. As a byproduct of the proof, we get a classification of the 3-connected planar graphs with fixing number 3.Comment: 34 pages, 3 figures, extended version of LICS 2017 pape

    Excluding a small minor

    Get PDF
    There are sixteen 3-connected graphs on eleven or fewer edges. For each of these graphs H we discuss the structure of graphs that do not contain a minor isomorphic to H. © 2012 Elsevier B.V. All rights reserved
    • …
    corecore