7,667 research outputs found

    Termination Detection of Local Computations

    Full text link
    Contrary to the sequential world, the processes involved in a distributed system do not necessarily know when a computation is globally finished. This paper investigates the problem of the detection of the termination of local computations. We define four types of termination detection: no detection, detection of the local termination, detection by a distributed observer, detection of the global termination. We give a complete characterisation (except in the local termination detection case where a partial one is given) for each of this termination detection and show that they define a strict hierarchy. These results emphasise the difference between computability of a distributed task and termination detection. Furthermore, these characterisations encompass all standard criteria that are usually formulated : topological restriction (tree, rings, or triangu- lated networks ...), topological knowledge (size, diameter ...), and local knowledge to distinguish nodes (identities, sense of direction). These results are now presented as corollaries of generalising theorems. As a very special and important case, the techniques are also applied to the election problem. Though given in the model of local computations, these results can give qualitative insight for similar results in other standard models. The necessary conditions involve graphs covering and quasi-covering; the sufficient conditions (constructive local computations) are based upon an enumeration algorithm of Mazurkiewicz and a stable properties detection algorithm of Szymanski, Shi and Prywes

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Computing on Anonymous Quantum Network

    Full text link
    This paper considers distributed computing on an anonymous quantum network, a network in which no party has a unique identifier and quantum communication and computation are available. It is proved that the leader election problem can exactly (i.e., without error in bounded time) be solved with at most the same complexity up to a constant factor as that of exactly computing symmetric functions (without intermediate measurements for a distributed and superposed input), if the number of parties is given to every party. A corollary of this result is a more efficient quantum leader election algorithm than existing ones: the new quantum algorithm runs in O(n) rounds with bit complexity O(mn^2), on an anonymous quantum network with n parties and m communication links. Another corollary is the first quantum algorithm that exactly computes any computable Boolean function with round complexity O(n) and with smaller bit complexity than that of existing classical algorithms in the worst case over all (computable) Boolean functions and network topologies. More generally, any n-qubit state can be shared with that complexity on an anonymous quantum network with n parties.Comment: 25 page

    The Complexity of Manipulating kk-Approval Elections

    Full text link
    An important problem in computational social choice theory is the complexity of undesirable behavior among agents, such as control, manipulation, and bribery in election systems. These kinds of voting strategies are often tempting at the individual level but disastrous for the agents as a whole. Creating election systems where the determination of such strategies is difficult is thus an important goal. An interesting set of elections is that of scoring protocols. Previous work in this area has demonstrated the complexity of misuse in cases involving a fixed number of candidates, and of specific election systems on unbounded number of candidates such as Borda. In contrast, we take the first step in generalizing the results of computational complexity of election misuse to cases of infinitely many scoring protocols on an unbounded number of candidates. Interesting families of systems include kk-approval and kk-veto elections, in which voters distinguish kk candidates from the candidate set. Our main result is to partition the problems of these families based on their complexity. We do so by showing they are polynomial-time computable, NP-hard, or polynomial-time equivalent to another problem of interest. We also demonstrate a surprising connection between manipulation in election systems and some graph theory problems

    Multiwinner Analogues of Plurality Rule: Axiomatic and Algorithmic Perspectives

    Full text link
    We characterize the class of committee scoring rules that satisfy the fixed-majority criterion. In some sense, the committee scoring rules in this class are multiwinner analogues of the single-winner Plurality rule, which is uniquely characterized as the only single-winner scoring rule that satisfies the simple majority criterion. We define top-kk-counting committee scoring rules and show that the fixed majority consistent rules are a subclass of the top-kk-counting rules. We give necessary and sufficient conditions for a top-kk-counting rule to satisfy the fixed-majority criterion. We find that, for most of the rules in our new class, the complexity of winner determination is high (that is, the problem of computing the winners is NP-hard), but we also show examples of rules with polynomial-time winner determination procedures. For some of the computationally hard rules, we provide either exact FPT algorithms or approximate polynomial-time algorithms

    Consensus theories: an oriented survey

    Get PDF
    This article surveys seven directions of consensus theories: Arrowian results, federation consensus rules, metric consensus rules, tournament solutions, restricted domains, abstract consensus theories, algorithmic and complexity issues. This survey is oriented in the sense that it is mainly – but not exclusively – concentrated on the most significant results obtained, sometimes with other searchers, by a team of French searchers who are or were full or associate members of the Centre d'Analyse et de Mathématique Sociale (CAMS).Consensus theories ; Arrowian results ; aggregation rules ; metric consensus rules ; median ; tournament solutions ; restricted domains ; lower valuations ; median semilattice ; complexity

    Manipulation of Social Program Eligibility: Detection, Explanations and Consequences for Empirical Research

    Get PDF
    We document manipulation of a targeting system which used a poverty index score to determine eligibility for social welfare programs in Colombia, including health insurance. We show strategic behavior in the timing of the household interviews around local elections, and direct manipulation when some households had their eligibility scores lowered. Initially the number of interviews increased around local elections. After the algorithm was made public to local officials, the score density exhibited a sharp discontinuity exactly at the eligibility threshold. The discontinuity at the threshold is larger where mayoral elections are more competitive; and smaller in municipalities with less competitive elections, more community organizations and higher newspaper circulation.Manipulation, Targeting, Local elections, Colombia
    • …
    corecore