45 research outputs found

    A Characterization of Approximation Resistance for Even kk-Partite CSPs

    Full text link
    A constraint satisfaction problem (CSP) is said to be \emph{approximation resistant} if it is hard to approximate better than the trivial algorithm which picks a uniformly random assignment. Assuming the Unique Games Conjecture, we give a characterization of approximation resistance for kk-partite CSPs defined by an even predicate

    Towards a Characterization of Approximation Resistance for Symmetric CSPs

    Get PDF
    A Boolean constraint satisfaction problem (CSP) is called approximation resistant if independently setting variables to 1 with some probability achieves the best possible approximation ratio for the fraction of constraints satisfied. We study approximation resistance of a natural subclass of CSPs that we call Symmetric Constraint Satisfaction Problems (SCSPs), where satisfaction of each constraint only depends on the number of true literals in its scope. Thus a SCSP of arity k can be described by a subset of allowed number of true literals. For SCSPs without negation, we conjecture that a simple sufficient condition to be approximation resistant by Austrin and Hastad is indeed necessary. We show that this condition has a compact analytic representation in the case of symmetric CSPs (depending only on the gap between the largest and smallest numbers in S), and provide the rationale behind our conjecture. We prove two interesting special cases of the conjecture, (i) when S is an interval and (ii) when S is even. For SCSPs with negation, we prove that the analogous sufficient condition by Austrin and Mossel is necessary for the same two cases, though we do not pose an analogous conjecture in general

    Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

    Get PDF
    A k-uniform hypergraph is said to be r-rainbow colorable if there is an r-coloring of its vertices such that every hyperedge intersects all r color classes. Given as input such a hypergraph, finding a r-rainbow coloring of it is NP-hard for all k >= 3 and r >= 2. Therefore, one settles for finding a rainbow coloring with fewer colors (which is an easier task). When r=k (the maximum possible value), i.e., the hypergraph is k-partite, one can efficiently 2-rainbow color the hypergraph, i.e., 2-color its vertices so that there are no monochromatic edges. In this work we consider the next smaller value of r=k-1, and prove that in this case it is NP-hard to rainbow color the hypergraph with q := ceil[(k-2)/2] colors. In particular, for k <=6, it is NP-hard to 2-color (k-1)-rainbow colorable k-uniform hypergraphs. Our proof follows the algebraic approach to promise constraint satisfaction problems. It proceeds by characterizing the polymorphisms associated with the approximate rainbow coloring problem, which are rainbow colorings of some product hypergraphs on vertex set [r]^n. We prove that any such polymorphism f: [r]^n -> [q] must be C-fixing, i.e., there is a small subset S of C coordinates and a setting a in [q]^S such that fixing x_{|S} = a determines the value of f(x). The key step in our proof is bounding the sensitivity of certain rainbow colorings, thereby arguing that they must be juntas. Armed with the C-fixing characterization, our NP-hardness is obtained via a reduction from smooth Label Cover

    The Biased Homogeneous r-Lin Problem

    Get PDF

    Complexity and Approximability of Parameterized MAX-CSPs

    Get PDF
    International audienceWe study the optimization version of constraint satisfaction problems (Max-CSPs) in the framework of parameterized complexity; the goal is to compute the maximum fraction of constraints that can be satisfied simultaneously. In standard CSPs, we want to decide whether this fraction equals one. The parameters we investigate are structural measures, such as the treewidth or the clique-width of the variable-constraint incidence graph of the CSP instance.We consider Max-CSPs with the constraint types AND, OR, PARITY, and MAJORITY, and with various parameters k, and we attempt to fully classify them into the following three cases: 1. The exact optimum can be computed in FPT time. 2. It is W[1]-hard to compute the exact optimum, but there is a randomized FPT approximation scheme (FPTAS), which computes a (1−ϵ)-approximation in time f(k,ϵ)⋅poly(n). 3. There is no FPTAS unless FPT=W[1].For the corresponding standard CSPs, we establish FPT vs. W[1]-hardness results

    A Characterization of Hard-to-cover CSPs

    Get PDF
    a

    From Weak to Strong LP Gaps for All CSPs

    Get PDF
    We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxations given by Omega(log(n)/log(log(n))) levels of the Sherali-Adams hierarchy on instances of size n. It was proved by Chan et al. [FOCS 2013] (and recently strengthened by Kothari et al. [STOC 2017]) that for CSPs, any polynomial size LP extended formulation is no stronger than relaxations obtained by a super-constant levels of the Sherali-Adams hierarchy. Combining this with our result also implies that any polynomial size LP extended formulation is no stronger than simply the basic LP, which can be thought of as the base level of the Sherali-Adams hierarchy. This essentially gives a dichotomy result for approximation of CSPs by polynomial size LP extended formulations. Using our techniques, we also simplify and strengthen the result by Khot et al. [STOC 2014] on (strong) approximation resistance for LPs. They provided a necessary and sufficient condition under which Omega(loglog n) levels of the Sherali-Adams hierarchy cannot achieve an approximation better than a random assignment. We simplify their proof and strengthen the bound to Omega(log(n)/log(log(n))) levels

    On the Approximability of Presidential Type Predicates

    Get PDF
    Given a predicate P: {-1, 1}^k ? {-1, 1}, let CSP(P) be the set of constraint satisfaction problems whose constraints are of the form P. We say that P is approximable if given a nearly satisfiable instance of CSP(P), there exists a probabilistic polynomial time algorithm that does better than a random assignment. Otherwise, we say that P is approximation resistant. In this paper, we analyze presidential type predicates, which are balanced linear threshold functions where all of the variables except the first variable (the president) have the same weight. We show that almost all presidential type predicates P are approximable. More precisely, we prove the following result: for any ?? > 0, there exists a k? such that if k ? k?, ? ? (??,1 - 2/k], and {?}k + k - 1 is an odd integer then the presidential type predicate P(x) = sign({?}k{x?} + ?_{i = 2}^{k} {x_i}) is approximable. To prove this, we construct a rounding scheme that makes use of biases and pairwise biases. We also give evidence that using pairwise biases is necessary for such rounding schemes
    corecore