511 research outputs found

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Design of Discrete-time Chaos-Based Systems for Hardware Security Applications

    Get PDF
    Security of systems has become a major concern with the advent of technology. Researchers are proposing new security solutions every day in order to meet the area, power and performance specifications of the systems. The additional circuit required for security purposes can consume significant area and power. This work proposes a solution which utilizes discrete-time chaos-based logic gates to build a system which addresses multiple hardware security issues. The nonlinear dynamics of chaotic maps is leveraged to build a system that mitigates IC counterfeiting, IP piracy, overbuilding, disables hardware Trojan insertion and enables authentication of connecting devices (such as IoT and mobile). Chaos-based systems are also used to generate pseudo-random numbers for cryptographic applications.The chaotic map is the building block for the design of discrete-time chaos-based oscillator. The analog output of the oscillator is converted to digital value using a comparator in order to build logic gates. The logic gate is reconfigurable since different parameters in the circuit topology can be altered to implement multiple Boolean functions using the same system. The tuning parameters are control input, bifurcation parameter, iteration number and threshold voltage of the comparator. The proposed system is a hybrid between standard CMOS logic gates and reconfigurable chaos-based logic gates where original gates are replaced by chaos-based gates. The system works in two modes: logic locking and authentication. In logic locking mode, the goal is to ensure that the system achieves logic obfuscation in order to mitigate IC counterfeiting. The secret key for logic locking is made up of the tuning parameters of the chaotic oscillator. Each gate has 10-bit key which ensures that the key space is large which exponentially increases the computational complexity of any attack. In authentication mode, the aim of the system is to provide authentication of devices so that adversaries cannot connect to devices to learn confidential information. Chaos-based computing system is susceptible to process variation which can be leveraged to build a chaos-based PUF. The proposed system demonstrates near ideal PUF characteristics which means systems with large number of primary outputs can be used for authenticating devices

    Complex dynamics of a microwave time-delayed feedback loop

    Get PDF
    The subject of this thesis is deterministic behaviors generated from a microwave time-delayed feedback loop. Time-delayed feedback systems are especially interesting because of the rich variety of dynamical behaviors that they can support. While ordinary differential equations must be of at least third-order to produce chaos, even a simple first-order nonlinear delay differential equation can produce higher-dimensional chaotic dynamics. The system reported in the thesis is governed by a very simple nonlinear delay differential equation. The experimental implementation uses both microwave and digital components to achieve the nonlinearity and time-delayed feedback, respectively. When a sinusoidal nonlinearity is incorporated, the dynamical behaviors range from fixed-point to periodic to chaotic depending on the feedback strength. The microwave frequency modulated chaotic signal generated by this system offers advantages in range and velocity sensing applications. When the sinusoidal nonlinearity is replaced by a binary nonlinearity, the system exhibits a complex periodic attractor with no fixed-point solution. Although there are many classic electronic circuits that produce chaotic behavior, microwave sources of chaos are especially relevant in communication and sensing applications where the signal must be transmitted between locations. The system also can exhibit random walk behavior when being operated in a higher feedback strength regime. Depending on the feedback strength values, the random behaviors can have properties of a regular or fractional Brownian motion. By unidirectional coupling two systems in the baseband, envelope synchronization between two deterministic Brownian motions can be achieved

    Continuous Variable Optimisation of Quantum Randomness and Probabilistic Linear Amplification

    Get PDF
    In the past decade, quantum communication protocols based on continuous variables (CV) has seen considerable development in both theoretical and experimental aspects. Nonetheless, challenges remain in both the practical security and the operating range for CV systems, before such systems may be used extensively. In this thesis, we present the optimisation of experimental parameters for secure randomness generation and propose a non-deterministic approach to enhance amplification of CV quantum state. The first part of this thesis examines the security of quantum devices: in particular, we investigate quantum random number generators (QRNG) and quantum key distribution (QKD) schemes. In a realistic scenario, the output of a quantum random number generator is inevitably tainted by classical technical noise, which potentially compromises the security of such a device. To safeguard against this, we propose and experimentally demonstrate an approach that produces side-information independent randomness. We present a method for maximising such randomness contained in a number sequence generated from a given quantum-to-classical-noise ratio. The detected photocurrent in our experiment is shown to have a real-time random-number generation rate of 14 (Mbit/s)/MHz. Next, we study the one-sided device-independent (1sDI) quantum key distribution scheme in the context of continuous variables. By exploiting recently proven entropic uncertainty relations, one may bound the information leaked to an eavesdropper. We use such a bound to further derive the secret key rate, that depends only upon the conditional Shannon entropies accessible to Alice and Bob, the two honest communicating parties. We identify and experimentally demonstrate such a protocol, using only coherent states as the resource. We measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 3.5 km of fibre transmission. The second part of this thesis concerns the improvement in the transmission of a quantum state. We study two approximate implementations of a probabilistic noiseless linear amplifier (NLA): a physical implementation that truncates the working space of the NLA or a measurement-based implementation that realises the truncation by a bounded postselection filter. We do this by conducting a full analysis on the measurement-based NLA (MB-NLA), making explicit the relationship between its various operating parameters, such as amplification gain and the cut-off of operating domain. We compare it with its physical counterpart in terms of the Husimi Q-distribution and their probability of success. We took our investigations further by combining a probabilistic NLA with an ideal deterministic linear amplifier (DLA). In particular, we show that when NLA gain is strictly lesser than the DLA gain, this combination can be realised by integrating an MB-NLA in an optical DLA setup. This results in a hybrid device which we refer to as the heralded hybrid quantum amplifier. A quantum cloning machine based on this hybrid amplifier is constructed through an amplify-then-split method. We perform probabilistic cloning of arbitrary coherent states, and demonstrate the production of up to five clones, with the fidelity of each clone clearly exceeding the corresponding no-cloning limit

    Development and evaluation of a programmable radio frequency signal

    Get PDF
    ThesisMost commercially available signal generators make use of a phase-locked loop in combination with analogue frequency synthesis to generate the desired frequency range. Advances in the development of components being used in digital frequency synthesis have made the use of direct digital synthesis (DDS) a viable option in radio frequency (RF) signal generation. The project consists of designing the interfacing between a DDS unit and a microcontroller to provide a versatile frequency generator in the lower high frequency (HF) spectrum. The research was aimed at testing the following hypothesis: A programmable Radio Frequency signal generator can be developed, using a DDS-based system with a microcontroller providing the required intelligence. A continuously variable frequency range in 1 Hz steps over a spectrum of 0- 10 MHz can be achieved. The following features were included in the design of the signal generator: • Setting the generator to a specific frequency; • Displaying the frequency and prompts from the microcontroller on a liquid crystal display; • Interfacing with a keypad; • Interfacing with a personal computer for remote RS232 operation; • Interfacing with a rotary optical encoder for up-and-down frequency control; • Sweeping of a range of frequencies; • Setting the step size of frequency increments; • Frequency shift keying (FSK) capability. The above features allowed ample demonstration of the software control over the associated hardware and enabled easy evaluation of the product. To evaluate the product, it was decided to concentrate on the following measurable aspects of a typical radio frequency (RF) signal generator: • The accuracy of the output frequency; • Evaluating the frequency range limits of the generator; • Making a spectral analysis of the output signal. During the execution of the project, insight was gained with respect to the following: • DDS theory; • DDS hardware interfacing; • C-programming as well as using the versatile DSSOOO microcontroller; • The importance of sound design principles in a hybrid digital and analogue radio frequency project. • Setting the step size of frequency increments; • Frequency shift keying (FSK) capability. The above features allowed ample demonstration of the software control over the associated hardware and enabled easy evaluation of the product. To evaluate the product, it was decided to concentrate on the following measurable aspects of a typical radio frequency (RF) signal generator: • The accuracy of the output frequency; • Evaluating the frequency range limits of the generator; • Making a spectral analysis of the output signal. During the execution of the project, insight was gained with respect to the following: • DDS theory; • DDS hardware interfacing; • C-programming as well as using the versatile DSSOOO microcontroller; • The importance of sound design principles in a hybrid digital and analogue radio frequency project

    All-Silicon-Based Photonic Quantum Random Number Generators

    Get PDF
    Random numbers are fundamental elements in different fields of science and technology such as computer simulation like Monte Carlo-method simulation, statistical sampling, cryptography, games and gambling, and other areas where unpredictable results are necessary. Random number generators (RNG) are generally classified as “pseudo”-random number generators (PRNG) and "truly" random number generators (TRNG). Pseudo random numbers are generated by computer algorithms with a (random) seed and a specific formula. The random numbers produced in this way (with a small degree of unpredictability) are good enough for some applications such as computer simulation. However, for some other applications like cryptography they are not completely reliable. When the seed is revealed, the entire sequence of numbers can be produced. The periodicity is also an undesirable property of PRNGs that can be disregarded for most practical purposes if the sequence recurs after a very long period. However, the predictability still remains a tremendous disadvantage of this type of generators. Truly random numbers, on the other hand, can be generated through physical sources of randomness like flipping a coin. However, the approaches exploiting classical motion and classical physics to generate random numbers possess a deterministic nature that is transferred to the generated random numbers. The best solution is to benefit from the assets of indeterminacy and randomness in quantum physics. Based on the quantum theory, the properties of a particle cannot be determined with arbitrary precision until a measurement is carried out. The result of a measurement, therefore, remains unpredictable and random. Optical phenomena including photons as the quanta of light have various random, non-deterministic properties. These properties include the polarization of the photons, the exact number of photons impinging a detector and the photon arrival times. Such intrinsically random properties can be exploited to generate truly random numbers. Silicon (Si) is considered as an interesting material in integrated optics. Microelectronic chips made from Si are cheap and easy to mass-fabricate, and can be densely integrated. Si integrated optical chips, that can generate, modulate, process and detect light signals, exploit the benefits of Si while also being fully compatible with electronic. Since many electronic components can be integrated into a single chip, Si is an ideal candidate for the production of small, powerful devices. By complementary metal-oxide-semiconductor (CMOS) technology, the fabrication of compact and mass manufacturable devices with integrated components on the Si platform is achievable. In this thesis we aim to model, study and fabricate a compact photonic quantum random number generator (QRNG) on the Si platform that is able to generate high quality, "truly" random numbers. The proposed QRNG is based on a Si light source (LED) coupled with a Si single photon avalanche diode (SPAD) or an array of SPADs which is called Si photomultiplier (SiPM). Various implementations of QRNG have been developed reaching an ultimate geometry where both the source and the SPAD are integrated on the same chip and fabricated by the same process. This activity was performed within the project SiQuro—on Si chip quantum optics for quantum computing and secure communications—which aims to bring the quantum world into integrated photonics. By using the same successful paradigm of microelectronics—the study and design of very small electronic devices typically made from semiconductor materials—, the vision is to have low cost and mass manufacturable integrated quantum photonic circuits for a variety of different applications in quantum computing, measure, sensing, secure communications and services. The Si platform permits, in a natural way, the integration of quantum photonics with electronics. Two methodologies are presented to generate random numbers: one is based on photon counting measurements and another one is based on photon arrival time measurements. The latter is robust, masks all the drawbacks of afterpulsing, dead time and jitter of the Si SPAD and is effectively insensitive to ageing of the LED and to its emission drifts related to temperature variations. The raw data pass all the statistical tests in national institute of standards and technology (NIST) tests suite and TestU01 Alphabit battery without a post processing algorithm. The maximum demonstrated bit rate is 1.68 Mbps with the efficiency of 4-bits per detected photon. In order to realize a small, portable QRNG, we have produced a compact configuration consisting of a Si nanocrystals (Si-NCs) LED and a SiPM. All the statistical test in the NIST tests suite pass for the raw data with the maximum bit rate of 0.5 Mbps. We also prepared and studied a compact chip consisting of a Si-NCs LED and an array of detectors. An integrated chip, composed of Si p+/n junction working in avalanche region and a Si SPAD, was produced as well. High quality random numbers are produced through our robust methodology at the highest speed of 100 kcps. Integration of the source of entropy and the detector on a single chip is an efficient way to produce a compact RNG. A small RNG is an essential element to guarantee the security of our everyday life. It can be readily implemented into electronic devices for data encryption. The idea of "utmost security" would no longer be limited to particular organs owning sensitive information. It would be accessible to every one in everyday life
    corecore