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Abstract

Random numbers are fundamental elements in different fields of science and technology

such as computer simulation like Monte Carlo-method simulation, statistical sampling,

cryptography, games and gambling, and other areas where unpredictable results are nec-

essary.

Random number generators (RNG) are generally classified as “pseudo”-random number

generators (PRNG) and “truly” random number generators (TRNG). Pseudo random

numbers are generated by computer algorithms with a (random) seed and a specific for-

mula. The random numbers produced in this way (with a small degree of unpredictability)

are good enough for some applications such as computer simulation. However, for some

other applications like cryptography they are not completely reliable.

When the seed is revealed, the entire sequence of numbers can be produced. The period-

icity is also an undesirable property of PRNGs that can be disregarded for most practical

purposes if the sequence recurs after a very long period. However, the predictability still

remains a tremendous disadvantage of this type of generators.

Truly random numbers, on the other hand, can be generated through physical sources

of randomness like flipping a coin. However, the approaches exploiting classical motion

and classical physics to generate random numbers possess a deterministic nature that is

transferred to the generated random numbers. The best solution is to benefit from the

assets of indeterminacy and randomness in quantum physics.

Based on the quantum theory, the properties of a particle cannot be determined with

arbitrary precision until a measurement is carried out. The result of a measurement,

therefore, remains unpredictable and random. Optical phenomena including photons as

the quanta of light have various random, non-deterministic properties. These properties

include the polarization of the photons, the exact number of photons impinging a detector

and the photon arrival times. Such intrinsically random properties can be exploited to

generate truly random numbers.

Silicon (Si) is considered as an interesting material in integrated optics. Microelectronic

chips made from Si are cheap and easy to mass-fabricate, and can be densely integrated.

Si integrated optical chips, that can generate, modulate, process and detect light signals,

exploit the benefits of Si while also being fully compatible with electronic. Since many
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electronic components can be integrated into a single chip, Si is an ideal candidate for

the production of small, powerful devices. By complementary metal-oxide-semiconductor

(CMOS) technology, the fabrication of compact and mass manufacturable devices with

integrated components on the Si platform is achievable.

In this thesis we aim to model, study and fabricate a compact photonic quantum random

number generator (QRNG) on the Si platform that is able to generate high quality, “truly”

random numbers. The proposed QRNG is based on a Si light source (LED) coupled with

a Si single photon avalanche diode (SPAD) or an array of SPADs which is called Si pho-

tomultiplier (SiPM). Various implementations of QRNG have been developed reaching an

ultimate geometry where both the source and the SPAD are integrated on the same chip

and fabricated by the same process.

This activity was performed within the project SiQuro—on Si chip quantum optics for

quantum computing and secure communications—which aims to bring the quantum world

into integrated photonics. By using the same successful paradigm of microelectronics—

the study and design of very small electronic devices typically made from semiconductor

materials—, the vision is to have low cost and mass manufacturable integrated quantum

photonic circuits for a variety of different applications in quantum computing, measure,

sensing, secure communications and services. The Si platform permits, in a natural way,

the integration of quantum photonics with electronics. Two methodologies are presented

to generate random numbers: one is based on photon counting measurements and an-

other one is based on photon arrival time measurements. The latter is robust, masks

all the drawbacks of afterpulsing, dead time and jitter of the Si SPAD and is effectively

insensitive to ageing of the LED and to its emission drifts related to temperature vari-

ations. The raw data pass all the statistical tests in national institute of standards and

technology (NIST) tests suite and TestU01 Alphabit battery without a post processing

algorithm. The maximum demonstrated bit rate is 1.68 Mbps with the efficiency of 4-bits

per detected photon.

In order to realize a small, portable QRNG, we have produced a compact configuration

consisting of a Si nanocrystals (Si-NCs) LED and a SiPM. All the statistical test in the

NIST tests suite pass for the raw data with the maximum bit rate of 0.5 Mbps. We also

prepared and studied a compact chip consisting of a Si-NCs LED and an array of detec-

tors. An integrated chip, composed of Si p+/n junction working in avalanche region and

a Si SPAD, was produced as well. High quality random numbers are produced through

our robust methodology at the highest speed of 100 kcps.

Integration of the source of entropy and the detector on a single chip is an efficient way to

produce a compact RNG. A small RNG is an essential element to guarantee the security

of our everyday life. It can be readily implemented into electronic devices for data en-

cryption. The idea of “utmost security” would no longer be limited to particular organs

owning sensitive information. It would be accessible to every one in everyday life.
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Chapter 1

Introduction

‘‘Anyone who attempts to generate random numbers by

deterministic means is, of course, living in a state of

sin.’’

John von Neumann

A random number is a string of bits taken from a sequence with a distribution which has

a constant probability for every bit belonging to that distribution (such a distribution is

called a uniform distribution). [1] For such a sequence, it must be impossible to predict

the future and past bits based on the knowledge of the present bit. Random numbers

are fundamental elements in different fields of science and technology such as computer

simulation like Monte Carlo-method simulation, statistical sampling, cryptography, games

and gambling, and other areas where unpredictable results are necessary.

1.1 Applications of random numbers

In this section, we explain the applications of random numbers in cryptography, simula-

tions and games. To our particular interest is their application in cryptography which

plays a really crucial role in the security of our everyday life and is the main area for which

the photonic quantum random number generators (QRNGs) introduced in this thesis are

intended for.

1.1.1 Random numbers in cryptography

Cryptography is the art of rendering messages unintelligible or indecipherable to any

unauthorized party. Methods and technologies for secure data transmission are developed

and studied in this field. Data confidentiality, data integrity, and authentication are dif-

ferent aspects in information security and are very important in modern cryptography.
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During on-line transactions, random numbers are used to produce confidential data (en-

cryption), maintain and assure the accuracy and consistency of data during the process

(digital signature), and to authenticate the user’s identity—e.g. the credit card owner’s

identity—(challenge-response protocols). [2]

For secure data transmission in cryptography, random numbers are used to encrypt and

decrypt secret messages between a sender and a receiver, conventionally called Alice and

Bob, respectively (Fig. 1.1). Alice uses a key to encrypt a message (plaintext) and sends

the encrypted message (ciphertext) to Bob. In symmetric encryption technique, where

both Alice and Bob share a secret key, if an adversary, conventionally called the Eaves-

dropper, has access to this key and the ciphertext, the security of the transmission channel

is lost and the confidential information is known to the irrelevant parties (the Eavesdrop-

per). In asymmetric encryption technique, however, there is a key pair, a public key and a

private key. Therefore, the security of this technique is higher than the symmetric encryp-

tion. The public key is available to anyone who might want to send a message to Bob, but

the private key is kept secret and only Bob knows it. Alice’s encrypted message using the

public (private) key can only be decrypted using Bob’s private (public) key which matches

the corresponding public (private) key. Therefore, passing public keys over communica-

tion channels (like the Internet) does not create a problem. The weakness of asymmetric

encryption is that it is slower than symmetric encryption; a lot more processing power is

required to encrypt and decrypt messages than the symmetric encryption technique.

Quantum cryptography is the art and science of exploiting quantum mechanical effects

in order to perform cryptographic tasks. It was proposed in the 1980s, first by Stephen

Wiesner (1983) and then by Charles H. Bennett and Gilles Brassard (1984, 1985). [3]

The rules of quantum physics can be used in “quantum” key distribution (QKD) which is

one important application of quantum cryptography. QKD takes advantage of quantum

mechanics for secure communications. Let Alice send some information to Bob through a

quantum channel (e.g. an optical fiber) using some property of photons (e.g. polarization

of photons) to encrypt her message. If the Eavesdropper attempts to have access to the

encrypted message by executing some measurement, according to quantum physics, she

perturbs the system and hence her presence would be known. However, it is more reason-

able if Alice and Bob, before exchanging a message, exchange a key through the quantum

channel. When they make sure the channel is safe, they can use the key to encrypt the

message and transfer it through the secure quantum channel.

This concept has been dealt with in QKD protocols like the Bennett and Brassard (BB84)

protocol. [4] This protocol can be explained using the concept of “qubit” which is the

quantum unit of information and its state is defined as the superposition of two states

characterizing a single particle (e.g. a spin 1/2 system or the two-state polarization of a

photon). For a photon, the qubit can be either the superposition of vertical and horizon-

tal linear polarization or right and left circular polarization—the binary value ‘0’ can be
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attributed to horizontal and right circular polarization and ‘1’ to vertical and left circular

polarization. Alice prepares the states and sends them to Bob one after the other (at-

tributing an index i to each state). Bob chooses randomly one of the two bases (linear or

circular), measures the states and attributes binary values of 0 and 1 (outcomes) to them.

Then, they check a subset of the key through a classical channel. Bob informs Alice of

the basis he chose to measure each qubit without telling her the result. Alice tells him

which bases are the same as the ones she used and which ones are different. They discard

the outcomes for which they have different bases and keep the remaining ones. This step

is called sifting and the remaining key is called sifted key. Then they need to verify their

outcomes: Alice chooses some indices i at random and reveals the outcome to Bob. He

compares her outcomes with his own and notifies Alice of the disagreements.

Quantum bit error rate (QBER) is defined as the ratio of discarded bits to the total

number of bits received by Bob. QBER was proposed by Beat Perny and Paul Townsend

to name the error rate in sifted key to distinguish it from bit error rate (BER) used in

standard communications. [3] If QBER≤ 11%, the quantum channel is considered to be

safe and Alice can encrypt her message using the transmitted key. Otherwise, the protocol

aborts and the key is discarded. It should be noted that in this case, if the Evesdropper

intercepts a qubit propagating from Alice to Bob, she just lowers the key rate without

gaining any useful information (if Bob does not receive an expected qubit, he informs

Alice to disregard it).

Figure 1.1: Scheme of the communication between a sender (Alice) and a receiver (Bob)

in cryptography. Alice encypts a message (plaintext) using a key to produce an en-

crypted message (ciphertext). Bob decrypts the ciphertext using a secret key (symmetric

encryption) or a public and private key (asymmetric encryption). The presence of an

Eavesdropper, with the knowledge of the ciphertext and the key, endagers the secure

communication between Alice and Bob.

1.1.2 Random numbers in simulations

Random numbers are extensively used in problems with random behavior that require

lots of experiments to be executed. Simulation programs run a large number of experi-

ments and record the outcome of events. These programs solve equations in mathematical
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models and use random numbers to estimate probabilities. The mathematical technique

of letting the computer perform lots of experiments based on drawing random numbers is

commonly called Monte Carlo simulation. It is a computational algorithm that relies on

repeated random sampling to obtain numerical results. It is mainly used in three main

areas: optimization, numerical integration and random sampling from certain probability

distributions. [5]

Monte Carlo method has been widely used to treat optimization problems. Numerical

solutions to optimization problems incur the risk of getting stuck in local minima. [6]

Monte Carlo method generates and uses random variables as well as random iterates.

The random iterates may enable the method to escape a local optimum and eventually

to approach a global optimum. It is a simple and effective way to obtain algorithms

with almost certain good performance uniformly across many data sets, for many sorts of

problems.

In numerical integration, when the number of dimensions d (equivalently the degrees of

freedom in many physical problems) is large, the deterministic numerical integration al-

gorithms no longer work efficiently. Monte Carlo methods are used to solve the problem

of the exponential increase in computation times imposed by going from one dimension

to a multidimensional region. The number of function values or points increases rapidly

with the number of dimensions.

For instance, if in one dimension n points are enough to provide the required accuracy,

then nd points are necessary for d dimensions. On the other hand, the boundary of a mul-

tidimensional region may be very complicated making it not very feasible to reduce the

problem to an iterated integral. [7] By using Monte Carlo methods, it can be estimated

by randomly selecting points in d -dimensional space, and taking some kind of average

of the function values at these points (as long as the function in question is reasonably

well-behaved). [8]

In sampling, the objective is to gather information about a random object by observing

many realizations of it. An example is simulation modeling, where a random process

mimics the behavior of some real-life system, such as a production line or telecommuni-

cations network. Another example is found in Bayesian statistics, where Markov chain

Monte Carlo is often used to sample from a posterior distribution. [5]

1.1.3 Random numbers in games

Unpredictable outcome is highly significant in games of gambling in casinos, online slots

games and computer games. It is essential to make the games less “determined” so that

the players face a huge challenge to guess the correct answer or to find the best solution

to win. If we consider tossing a fair coin or rolling a fair six-sided dice, the outcome has

an equal probability of being heads or tails and 1, 2, 3, 4, 5 and 6, respectively. But
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a coin or a dice cannot be used in a computer, since the computers need to use a sort

of algorithm to produce random numbers. If the random numbers are generated with a

certain formula, they could be guessed, controlled and eventually the result of the game

would not be unpredictable anymore and the player would have a high chance to win. [9]

Most numbers used in games seem random enough, but they are not really random. A

game program is developed with an implemented random number generator (RNG) which

is fed by a seed to generate random numbers. All the subsequent random numbers in a

stream of random numbers depend on the seed which if be discovered, results in a potential

threat for the game to be controlled by the player. However, in online gaming, the risk

of this is fairly low.

Random movements of the objects and creatures or random appearance of some game

items, e.g. in video games, affect the course of the game to a great extent. In computer

card games different tasks can be done by a RNG: drawing a card at random, drawing

a hand of n cards at random from a shuffled deck, shuffling the deck and dealing cards

to a set of players. In racing car and motorcycle games, random numbers are used to

determine how fast or slow the other cars move. In fact, there would be an implemented

RNG in every game today to assure the unpredictability of the outcomes in different

stages of the game. [9]

1.2 Pseudo random numbers vs. truly random num-

bers

As mentioned in the previous section, in the field of cryptography, the key Alice and Bob

use to encrypt and decrypt messages is of high significance for secure communications

between them. Random numbers are used to produce cryptographic keys. RNGs are

generally classified as “pseudo” random number generators (PRNG) and “truly” random

number generators (TRNG). [10] Pseudo random numbers are generated by computer al-

gorithms with a (random) seed and a specific formula. The random numbers produced in

this way (with a small degree of unpredictability) are good enough for some applications

such as computer simulation. However, for some other applications like cryptography

they are not completely reliable. When the seed is revealed, the entire sequence of num-

bers can be produced. The periodicity is also an undesirable property of PRNGs that

can be disregarded for most practical purposes if the sequence recurs after a very long

period. However, the predictability still remains a tremendous disadvantage of this type

of generators.

Truly random numbers, on the other hand, can be generated through physical sources of

randomness like flipping a coin. However, the approaches exploiting classical motion and

classical physics to generate random numbers possess a deterministic nature that is trans-

5



Chapter 1. Introduction

ferred to the generated random numbers. The best solution is to benefit from the assets

of indeterminacy and randomness in quantum physics. Based on the quantum theory, the

properties of a particle cannot be determined with arbitrary precision until a measure-

ment is carried out. The result of a measurement, therefore, remains unpredictable and

random. [11] Optical phenomena including photons as the quanta of light have various

random, non-deterministic properties. These properties include the polarization of the

photons, the exact number of photons impinging a detector and the photon arrival times.

Such intrinsically random properties can be exploited to generate truly random numbers.

1.3 All-silicon-based approach

Si is considered as an interesting material in integrated optics. Microelectronic chips made

from Si are cheap and easy to mass-fabricate, and can be densely integrated. Si integrated

optical chips, that can generate, modulate, process and detect light signals, exploit the

benefits of Si while also being fully compatible with electronic. [12]

Si photonics has been used to develop various photonic devices based on silicon, such as

waveguides, filters, and modulators. It is the leading candidate for optical interconnect

(communication by optical fibers) due to its unique combination of low fabrication costs,

performance enhancements resulting from electronic–photonic integration, and compati-

bility with the world’s most successful technology for producing electronics, complemen-

tary metal-oxide-semiconductor (CMOS). [13] The interconnect market has gone through

a transition from electrical to optical technology due to the limitations of copper as an

interconnect medium including its high loss, dispersion and low fundamental speed. In

addition, germanium photodetectors have been built on a Si photonic platform. These

photonic devices have already been monolithically integrated on Si chips. [14] By CMOS

technology, the fabrication of compact and mass-manufacturable devices with integrated

components on the Si platform is achievable.

1.4 Objective of the thesis

This thesis has been carried out within the SiQuro project [15] (on Si chip quantum

optics for quantum computing and secure communications) which aims to bring the

quantum world into integrated photonics. By using the same successful paradigm of

microelectronics—the study and design of very small electronic devices typically made

from semiconductor materials—, the vision is to have low cost and mass manufacturable

integrated quantum photonic circuits for a variety of different applications in quantum

computing, measure, sensing, secure communications and services. The Si platform per-

mits, in a natural way, the integration of quantum photonics with electronics.

6
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The objective of this thesis, as part of the project SiQuro (Work Package 4), is to model,

study and fabricate a compact photonic QRNG on the Si platform able to generate high

quality, “truly” random numbers. To achieve this goal, we moved from a macroscopic

structure with individual components of the source of entropy and the detector coupled

with each other through an optical multimode fiber, to a compact configuration with the

source of entropy closely coupled with the detector in free space and, eventually, to a

microscopic structure with the source of entropy and detector integrated on a single Si

chip.

1.5 Thesis outline

The thesis is divided into seven chapters; the content of each chapter is as follows. The

first chapter contains an introduction on the thesis research work and the objective of the

thesis. In the second chapter, different types of random number generators are introduced.

We classify them as non-quantum physical RNGs and quantum physical RNGs. Quan-

tum physical RNGs are then classified into non-photonic QRNG and photonic QRNG.

Different methods are presented and discussed in this chapter.

Chapter three contains the details of our QRNG based on silicon nanocrystals (Si-NCs)

LED1 and a commercial silicon single photon avalanche diode (Si SPAD). The theory and

experimental approach of the methodology are explained and results and discussions are

provided at the end of the chapter. Chapter four introduces a robust QRNG2 based on

the arrival times of photons. The source of entropy is Si-NCs LED and the randomness

extraction is executed in a field-programmable gate array (FPGA). The results of the

statistical tests are demonstrated at the end of this chapter.

The fifth and sixth chapters present a compact configuration for random number gen-

eration based on arrival times of photons. In chapter five, the compact configuration

consisting of Si-NCs large area LED (LLED)3 and Si photomultiplier (SiPM)4 is pro-

posed and studied. The QRNG in chapter six uses Si-NCs LLED as the source of entropy.

The method consists of 16 SPADs connected to 4 time to digital converters (TDCs)5 and

operates in oversampling regime.

1Fabricated by Advanced Photonics and Photovoltaics (APP) group at the Foundation of Bruno

Kessler (FBK)
2This methodology was proposed by Giorgio Fontana (http://www.ing.unitn.it/~fontana/) and

improved through our discussions.
3Fabricated by Advanced Photonics and Photovoltaics (APP) group at the Foundation of Bruno

Kessler (FBK)
4Fabricated by Integrated Radiation and Image Sensors (IRIS) group at the Foundation of Bruno

Kessler (FBK)
5Designed in Integrated Radiation and Image Sensors (IRIS) group at the Foundation of Bruno Kessler

(FBK)
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In chapter seven, the importance of an integrated, compact QRNG–with the application

in everyday life and accessibility to everyone–is expressed. It consists of an emitter con-

taining 16 pixels (Si SPADs) with p+/n Si junction and a single pixel with the same p+/n

Si junction as the detector1. The same approach as the robust methodology in chapter five

is used in this chapter as well to generate random numbers. The results and discussions

are included at the end of the chapter. The overall conclusions are provided at the end of

the thesis. In all the experiments conducted in the above-mentioned chapters, I prepared

the setups and performed the statistical analyses.

1Fabricated by Integrated Radiation and Image Sensors (IRIS) group at the Foundation of Bruno

Kessler (FBK)
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Chapter 2

Physical Random Number

Generators

Coin flipping, dice, shuffling playing cards and roulette wheel are among the earliest

methods to generate random numbers in games, gambling and for scientific purposes. [16]

Today, these early methods are mainly used in games and gambling. They are not suitable

for statistical and cryptographic applications since they are very slow phenomena.

The invention of computer revolutionized the way random numbers were generated as well

as many other amazing achievements by performing lengthy, complicated processes im-

possible to be done by humans. Algorithmic methods were developed to generate random

numbers from an initial value called “seed”. As explained in Chapter 1, the mathemati-

cal algorithms produce random numbers that seem to be random and are called pseudo

random numbers. In order to generate truly random numbers, one needs to prepare a

hardware random number generator, i.e. an apparatus that generates random numbers

from a physical process. Here we classify hardware (true, physical) random number gen-

erators (RNGs) as non-quantum, based on the phenomena explained by classical physics,

and quantum RNGs (QRNGs), based on the inherent randomness in quantum phenomena

explained by quantum physics.

2.1 Non-quantum physical RNGs

As mentioned before, to overcome the problems of determinacy and predictability asso-

ciated with arithmetic algorithms, physical phenomena have been taken into account to

generate true random numbers. The non-quantum physical random number generators

have been produced exploiting different types of noise as the source of entropy.

9
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2.1.1 Thermal noise

Thermal noise is the thermal fluctuations of the voltage of a conductor at equilibrium

that is originated from the random motion of charge carriers. [17] It is independent of the

amount of current flowing and its intensity varies with temperature. Throughout a finite

frequency range (up to microwave frequencies), thermal noise has a nearly Gaussian am-

plitude distribution (see Appendix A) and the power spectral density is nearly constant.

It is also called “Johnson-Nyquist” noise after John B. Johnson and Harry Nyquist who

discovered and explained it in 1926. [17]

Thermal noise has been amplified to provide a random voltage source to generate random

numbers. [18, 19, 20, 21, 22] The schematic of a RNG based on thermal noise of a resistor

is presented in Fig. 2.1. [19] Vnoise is the thermal noise of a resistor and Vth is the threshold

of the high speed comparator that is equal to the mean voltage of the input noise signal.

The input signal is amplified by a low-noise amplifier and then the analog output noise

passes through a comparator. The output of the comparator is sampled and latched to

a register. One major application of this type of generator is to provide the seeds for

PRNGs.

Figure 2.1: Schematic of an RNG based on the noise of a resistor. [19]

Metastability is an unstable equilibrium state in which the logical circuit is not able to

settle into a stable ‘0’ or ‘1’ output level for an indeterminate time. The output floats at

an intermediate value between ‘0’ and ‘1’ until the system falls into a stable state. [23]

In [20, 24], thermal noise and metastability have been used as sources of randomness. In

the chip presented in [20], there are 64 switch components of c0, c1, c2,..., c63 to form

two delay paths in 264 different configurations (since each switch component can take

two states of ‘0’ and ‘1’). The two delay paths are excited simultaneously to allow the

transitions to race against each other. There is an arbiter block at the end of the delay

paths which determines which rising edge arrives first and sets its output to ‘0’ or ‘1’.

When the arbiter becomes metastable, it generates random responses.

10
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The proposed generator in [20] is very sensitive to temperature. To minimize the sen-

sitivity to the temperature, eight different RNG circuits, each calibrated at intervals of

approximately 10◦C, have been used. Therefore, the tolerance of operation was increased

to around 80◦C. The experiments were conducted in an oven with thermostat control to

provide cyclic temperature changes. It is essential to apply post-processing to the original

bit streams to eliminate the large difference between the probability of output values of

‘0’ and ‘1’ (this difference is called “bias” that is explained in Section 2.3.6). This results

in a reduction of 65-75% of the bit stream and hence a reduction in the efficiency of the

RNG. [20]

Even though the electronic chip of the RNG in [20] is easy to be designed and fabricated,

there exist some weaknesses including the sensitivity to the temperature, application of

post-processing to the raw data and low efficiency. The authors do not estimate or deter-

mine the bit rate of the RNG.

In the proposed method in [24], a latch (as the main component of RNG) is tuned into

the metastable region in order to minimize the effect of the deterministic noise (external

noise, power supply noise, and other non-random events) and to increase the effect of

thermal random noise to generate random bits. The metastable operation is controlled

by recording the resolution time (defined as the time that it takes the system to resolve

from the metastable point to one of the two stable states, either a value of ‘0’ or ‘1’) of

each metastable event without observing the value of the generated output. There is a

control module which grades the quality of the output bit stream and tunes the system

for the maximum probability of randomness.

The RNG in [24] is based on an integrated chip fabricated in a 0.13 µm bulk CMOS

technology. The actual bit rate of the RNG is 200 kbps with the theoretical estimation

of reaching the maximum value of 50 Mbps. The main drawback of the RNG is the ne-

cessity to have a control system to tune the latch into the metastable region to avoid the

domination of deterministic noise over the thermal random noise.

In the commercial RNG produced by Intel [25], thermal noise is used to modulate the fre-

quency of a low-frequency oscillator (see Fig. 2.2). The noise-modulated slower oscillator

is used to trigger measurements of the fast oscillator and consequently streams of random

bits at a rate of 3 Gbps are generated. The RNG takes pairs of 256-bit random samples

and applies them to a conditioner which reduces them to a single and more secure 256-bit

sample. The secure sample is then used as the seed of a PRNG which makes the numbers

ready for use in the Intel RdRand processor instruction. [25]

The problem with the Intel’s RNG (and generally with RNGs based on the amplification

of thermal noise) is that the noise source is easily influenced by other nearby signals and

can be observed and even manipulated by the attacker who would then be able to predict

the output or generate his desired output. [26]

11
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Figure 2.2: Schematic of a dual oscillator in a physical RNG based on frequency jitter in

oscillators. [25]

2.1.2 Avalanche noise

Reverse-biased semiconductor p-n junctions, near the breakdown voltage (the voltage

beyond which a very small change in voltage results in a sudden, large increase in the

current), generate white noise (with Gaussian distribution) at radio frequencies. [27]

The Araneus Alea II [28] uses the avalanche noise of a reverse-biased p-n junction as the

source of entropy. The noise is amplified and digitized with an analog-to-digital converter

(ADC). The raw data from the ADC are then processed to remove the correlation and

bias. Random numbers are generated at the bit rate of 100 kbps. [28]

Chaos Key [29] and TrueRNG [30] use the avalanche noise as the entropy source, as well.

In TrueRNG, the noise from the p-n junction (biased at 12 V) is amplified and digitized

and then post-processed. The generated random numbers are transmitted through a USB

port at the speed of > 350 kbps. [30] Chaos Key sends generated random numbers over

a USB port at the speed of approximately 8 Mbps. [29]

As mentioned in the previous section, the problem with RNGs based on the noise ampli-

fication is that the noise source can be easily influenced by other nearby signals and can

be observed and manipulated by an attacker. [26]

2.1.3 Dark noise

In single photon avalanche diodes (SPADs), which operate at voltages above the break-

down voltage, some pulses are generated even when they are not illuminated. These

pulses are called primary and secondary dark counts which are due to thermal genera-

tion of carriers in the p-n junction of the SPAD and afterpulses (pulses produced by the

recombination of trapped carriers after a dark pulse or a pulse resulted from a photon

detection), respectively (see Section 3.2 for more details). [31]

The dark noise of SPAD has been used to generate random numbers in [31]. The random

dark pulses are converted into pulses of uniform width transmitted to a PC to register the
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digital binary value ‘1’ when the pulse is high and ‘0’ when the pulse is low (0 V). Two

excess biases (the excess voltage applied to SPAD above the breakdown) of 5 V and 7 V

are considered along with several uniform pulse widths. The percentage of generated ‘0’

is monitored and is found to be close to 50% for the pulse widths of 75 µs and 64 µs at

the excess bias of 5 V and 7 V, respectively. [31] Even though the method and electronic

parts of the proposed RNG are simple to be implemented, the low efficiency and high

dependence on the pulse width (in order to achieve 50% probability of ‘0’ or equivalently

‘1’) are its main drawbacks.

2.1.4 Chaos

Several works have been published based on the chaotic systems as sources of physical

randomness. [32, 33, 34, 35, 36, 37]

In [35], the chaos in lasers was used for the first time to achieve efficient and stable

generation of random bits at high frequencies. In this device system, there are two semi-

conductor lasers with chaotic intensity fluctuations. The output intensity of each laser

is converted to an alternate current (AC) electrical signal by photodetectors. It is then

amplified and converted to a binary signal using an ADC driven by a fast clock. Like

the previous methods to generate random numbers based on noise, the converted digital

signal is sampled at the rising edge of the clock. Then the binary bit signals obtained

from the two lasers are combined by a logical exclusive or (XOR) operation to generate

random bit sequences.

At a particular bit rate, some adjustments need to be done to generate random bit se-

quences with equalized ratio of ‘0’ and ‘1’. Control parameters of the lasers (the injection

current, the length of the external cavity and the optical feedback strength) and the

threshold levels of the ADC are fixed in order to produce random bit streams that pass

the statistical tests. The maximum achievable bit rate of this RNG is 1.7 Gbps corre-

sponding to a clock with a frequency of 1.7 GHz. [35]

The RNG in [37] is based on an integrated chip with two units of chaos generation and

post-processing. The core part of the chaos generation unit is a dual-mode amplified

feedback laser (a distributed feedback laser with an integrated feedback cavity composed

of a phase section and an amplifier section) that can work in the dual-mode state when

the two laser modes have comparable threshold gain (by adjusting the DC bias currents

of each section of the unit). In the proposed device, there is a fiber-based external optical

feedback loop to drive the two lasing modes entering the chaos state. [37]

The chaos signal is then converted into an electronic signal by a broadband photodiode

(with 50 GHz bandwidth), is sampled by an oscilloscope at the rate of 160 GS/s and is

digitized by an 8-bit ADC. In the post-processing stage, different number of least signifi-

cant bits (LSBs) are considered and their distributions are monitored. It is seen that by
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retaining 4 LSBs of each 8-bit sample, a uniform distribution is obtained with a reduced

correlation (compared with 8-bit LSBs) generating random numbers at the bit rate of

640 Gbps. [37]

The problem with the proposed RNG by Zhang et al. [37] is that several parameters need

to be adjusted (like in the case of the previously-mentioned RNG by Uchida et al. [35]).

As mentioned before, the DC bias current to the sections of the dual-mode amplified laser

has to be adjusted in order to make the two modes to have comparable threshold gain.

The two lasing modes have to be then driven into the chaos state by an external optical

feedback loop. The temperature is kept fixed at 25◦C by a thermoelectric cooler. [37] All

these considerations result in the lack of robustness and security of the RNG.

In [38], spontaneous chaotic oscillations of the current through semiconductor superlat-

tices (SLs) at room temperature are proposed as the source of entropy for RNG. The

speed of 6.25 Gbps is achieved using a sampling rate of 1.25 GHz, 4th derivative (discrete

time derivative of the digitized current signal) and considering 5 LSBs out of 8 bits. In

this implementation the post-processing, derivative and LSB retention were performed in

an offline procedure.

A linear combination of the signals of 4 and 6 SL devices results in 40 and 80 Gbps bit rate

generation without the use of derivatives. Alternatively, a combination of both methods

may be used at 5 GHz sampling rate with 2 SLs, a 3rd order derivative, and retention of

4 LSBs for a generation rate of 20 Gbps. [38] In spite of the high bit rates, the main weak

point of this RNG is that a very careful choice of the number of SLs, the order of the

derivatives, the number of LSBs retention and the combination of the SL signals (adding

or subtracting the signals) is essential in order to minimize the effects of correlation and

bias and to pass the statistical tests.

The computer mouse movements have been used as a source of randomness in [39]. The

analog signal of the trace of mouse movements is converted to a digital sequence by con-

sidering sampled coordinates corresponding to the mouse movements. The value of these

coordinates usually ranges from 1 to several thousands. To obtain real values between

0 and 1, every two adjacent points coordinates are considered and an angle is defined

as: arctan (|yi+1 − yi|/|xi+1 − xi|). This angle is then mapped to a real value by dividing

by π/2, so that from n points, n-1 real numbers are achieved.

In order to eliminate the regular patterns in the mouse trace made by the same user,

chaotic hash functions1 are used as the post-processing algorithms. The real numbers

(each containing 52 bits in this implementation) are converted into their corresponding

bits (xbit) using the formula: xreal =
∑52

bit=1 xbit (1/2)bit. The chaotic signals are then gen-

erated by using three chaotic hash functions.

1A hash function is a kind of one-way function (a mathematical algorithm) that maps data of arbitrary

size to a bit string of a fixed size. Chaotic hash functions are the hash functions integrated with chaotic

maps. [40]
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The problem with the mouse movements as the source of entropy is that, as mentioned

above, there exist similar patterns for the same user. Therefore, careful choice of post-

processing algorithms is of high importance to provide very high sensitivity of the output

with respect to the input (i.e. even a slight change of the mouse movement should lead

to a significant difference in the generated random number.) [39]

2.2 Quantum physical RNGs

Although the methods presented in the previous section are considered good substitutes

for the computer-based PRNGs, they are not completely reliable since they are solely

based on classical physics. Quantum mechanics, on the other hand, with inherent unpre-

dictability and indeterminacy in quantum phenomena provides the best solution for the

generation of non-deterministic, unpredictable, and high quality random numbers.

2.2.1 Non-photonic QRNG

Several non-photonic or non-optical quantum physical properties have been used to gen-

erate random numbers such as: the radioactive decay and shot noise.

2.2.1.1 Radioactive decay

In 1956, Isida and Ikeda [41] used the radioactivity to exploit the intrinsic randomness in

quantum phenomena and to produce a QRNG. They counted the number of output pulses

of a Geiger-Müller (G-M) tube1 produced by the radioactive decay of Cobalt-60 in a con-

stant time interval. The distribution of these numbers is Poisson (see Appendix. B) with

the probability of finding n pulses in a time interval t (seconds) to be Pn(t) = (λt)n

n!
e−λt,

where λ is the mean number of pulses (in one second).

If the number of pulses is distributed according to a Poisson distribution with a fairly

large mean value, the LSBs of the numbers are approximately equally distributed. In

the experiment of Isida and Ikeda [41], when the mean value was larger than about 50

the last figures (LSBs) of the sequences of numbers were distributed equally. The au-

tocorrelation of these last figures was calculated and the correlogram was drawn. The

LSBs were considered independent without any significant correlation coefficient. Thus,

it was considered that the sequences of the LSBs of the numbers would be able to produce

random numbers. [41]

Since 1956 different types of QRNGs based on radioactive decay have been proposed. [42,

1It is a tube filled with an inert gas such as helium, neon, or argon at low pressure, to which a high

voltage is applied. The tube conducts electrical charge when a particle or photon of incident radiation

makes the gas conductive by ionization. The ionization is considerably amplified within the tube to

produce an easily measured detection pulse, which is fed to the processing and display electronics. [42]
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43, 44, 45, 46, 47] The comparison of the time difference between successive pairs of ra-

dioactive decays in the G-M detector is used to generate random numbers. [46] If ti < ti+1

a bit with value ‘1’ is generated; otherwise, the generated bit will be ‘0’ (Fig. 2.3). This

scheme has been implemented in the so-called HotBits generation hardware which pro-

duces random data at the rate of about 800 bps. [46]

In the method proposed in [45], the random number generation is based on the state of a

fast clock. When a pulse arrives, if the state of the clock is high, the generator outputs ‘1’

and if it is low, the output is ‘0’. With a good time resolution, as mentioned before, the

LSBs of the digitized bit should be random and post-processing should not be necessary.

In some works in the last decade, G-M detectors have been replaced with semiconductor

detectors. [42, 47] The advantage of semiconductor detectors over G-M detectors is that

they do not require high voltage. However, their output signal is weaker compared with

G-M tubes.

Even though the radioactive decay is a good source of quantum randomness, there are

some drawbacks which make the generators based on this quantum phenomenon incon-

venient for practical, widespread use. These drawbacks include the need for a radioactive

source and the necessity to shield and isolate the QRNG in order to avoid any harm to

the users and to prevent the detector from counting the undesirable signals from cosmic

rays, radiation from radioactive materials in the Earth’s crust, etc. [48]

Figure 2.3: The time difference between the two events in the G-M tube is used to generate

random bits. If ti < ti+1 a bit value of ‘1’ is generated; otherwise the bit ‘0’ is generated.

2.2.1.2 Shot noise

Shot noise is time-dependent fluctuations in electrical current originating from the discrete

nature of electric charge. It is fundamentally non-deterministic, has a Poisson distribution

(see Appendix. B) and its amplitude is proportional to the square root of the total current

flow and bandwidth. Depending on the conditions it is generated, it may be considered

either classical or quantum mechanical or a mixture of both. [49]

Shot noise occurs when charge carriers pass through a potential barrier such as a diode

junction in MOS transistors. Shot noise in MOS transistors consists of three major com-

ponents: sub-threshold leakage, gate leakage and junction leakage. Sub-threshold leakage

is the current between the source and drain of a MOS field-effect transistor (MOSFET)
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when the transistor is in sub-threshold region or weak-inversion region (where gate-to-

source voltages are below the threshold voltage). Gate leakage or gate oxide leakage is

due to tunneling across the insulating layer under the gate and the junction leakage is

due to high electric fields across reverse-biased p-n junctions. [50]

The ComScirer PQ4000KS [51] is a commercial RNG that uses shot noise due to sub-

threshold leakage and gate leakage (quantum phenomena) in MOS transistors along with

sources of chaotic entropy (a combination of thermal noise, other types of transistor noise

and switching noise) as the source of entropy. Twenty-four independent, high frequency

oscillating signal sources continuously operate at different frequencies between 200 and

400 MHz. Each oscillator is sampled separately to produce outputs and the outputs are

further combined to produce noisy output signals. Seventy-five of these noisy signals are

combined to produce a single sampled binary signal at 128 Mbps. [51]

The PQ4000KS has three independent generators like the one described above. The

statistics of each of these three generators is continuously monitored in the generator

hardware. The outputs of the three generators are combined to produce one data stream

at 128 Mbps, and finally blocks of 32 non-overlapping consecutive bits are XORed to-

gether to produce each final output bit at the rate 4 Mbps. [51]

Despite the fact that shot noise is a quantum phenomenon, it is usually not well sepa-

rated from thermal noise and is affected by environmental noise. The commercial RNG of

ComScirer PQ4000KS cannot be considered a purely QRNG since it uses a combination

of shot noise and other sources of noise to maximize the entropy (see Section 2.3.5) and

enhance the quality of output bits (i.e. to reduce the possible correlation and bias among

the random numbers in order to improve the quality of random numbers and pass the

statistical tests).

2.2.2 Photonic QRNG

The inherent randomness in quantum mechanical properties of light—as a simple and suit-

able substitute for other quantum sources of entropy particularly radioactive decay—has

been used advantageously to generate random numbers. Optical phenomena, including

photons as the quanta of light, have various random, non-deterministic properties. These

properties include the polarization of the photons, the exact number of photons illumi-

nating a detector and the photon arrival times. Such intrinsically random properties can

be exploited to generate truly random numbers. A classification of these approaches is

presented here.

2.2.2.1 Beam splitter and two detectors

A single photon arriving at a beam splitter (BS)—with equal transmissivity and reflec-

tivity T=R=1/2—can take either of two different paths out of the BS (Fig. 2.4). Single
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photon detection is necessary to detect the single photons transmitted through or re-

flected from the BS. Depending on which detector clicks, a bit ‘0’ or ‘1’ is produced (we

can associate the clicks on detector 1 with bit value ‘0’ and the clicks on detector 2 with

bit value ‘1’).

Figure 2.4: Schematic of a beam splitter (BS) and two detectors (D1 and D2). The

photon on the balanced BS can take either of the two paths reaching D1 or D2 with

equal probability of 0.5. The clicks on D1 and D2 generate the bit values “0’ and “1”,

respectively.

A complete implementation of a BS and two photomultiplier tubes (PMTs) was developed

as an independent device in 2000. [52] By utilizing either a BS or a polarizing BS, single

photon detectors and high speed electronics, binary random numbers were generated at

a rate of 1 Mbps. [52] The approach based on a BS and two detectors has been used in

several works. [53, 54, 55]

Commercial products, such as the Quantis RNG [53], which are based on a BS and two

single photon detectors, generate random numbers at the bit rate of 4 and 16 Mbps after

the application of post-processing to the raw data.

Unequal losses, unmatched detection efficiencies and imperfections of the BS and the sin-

gle photon deterctors affect the random number distribution and would be fatal for the

QRNG reliability.

2.2.2.2 Photon counting

Different approaches have been proposed and developed with respect to photon counting.

For example, in [56] random bits are generated based on the parity of the total number of

counts (of the photons emitted from an LED and detected by a PMT for fast detection)

in a fixed period. The intensity of the LED is stabilized and is attenuated to the single

photon level. The detected counts during a sampling time interval are interpreted as

‘0’ and ‘1’ for an even and odd number of counts, respectively. After the application of

post-processing to reduce the correlation and bias among the bits, the bit rate of 50 Mbps

is achieved. [56]
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The comparison of the photon numbers in consecutive (attenuated) laser pulses distributed

in time [57] is another example of a generator based on photon counting. If there are n1

photons in a pulse and n2 photons in the following one, the bit values ‘1’ and ‘0’ are

generated if n1>n2 and n1<n2, respectively. Random numbers are generated at the rate

of 2.4 Mbps.

2.2.2.3 Arrival time of photons

Randomness in photon arrival time has been used in different methods to generate random

numbers. [58, 59, 60, 61, 62, 63, 64, 65, 66] One of the first QRNGs that used time detection

approach is presented by Stipcevic and Rogina [59] in which the arrival time of photons

from an LED at a PMT are compared, in a similar manner to Fig. 2.3. A restartable clock

synchronized with the beginning of each random interval is used in this method. Number

of pulses of the restartable clock within each random interval is counted and compared

to generate random bits. The efficiency of this method is around 0.5 bits per detection.

The correlation and bias are eliminated in this approach using the restartable clock and

the maximum bit rate of 1 Mbps is achieved. [59]

In [61], a coherent continuous-wave (CW) 1550 nm laser diode, attenuated to the picowatt

level, is used as the source of entropy. It is coupled directly into an InGaAs avalanche

photodiode (APD) (cooled down to -30◦C) via a single mode fiber. The signal from the

APD is amplified and sent into time tagging, single photon counting electronics. The time-

tagged events acquired are converted into random bits as follows. If a photon is found in

an odd clock cycle, the bit value ‘0’ is generated and if it is found in an even cycle, the

bit ‘1’ is produced. Sequences of random bits are generated at a rate of 4.01 Mbps. [61]

The implementation in [63] uses a strongly attenuated LED with a PMT for photon

detection. For the analysis of the photon arrival times, time tagging electronics is used

with a resolution of 1 ps and a throughput of 12.5 Mcps (mega counts per second).

In this approach the exponential distribution of the arrival times of photons introduces

undesirable bias in the raw data which is removed by post-processing operations. The

QRNG generates random numbers at the bit rate of 152 Mbps. [63]

The QRNG scheme of Nie et al. [64] is based on photon arrival time measurement that

takes advantage of an external time reference. A SPAD is used to detect photons emitted

from a highly attenuated CW laser. The time difference between photon detection and an

external time reference is measured as the raw data. Even though the CW laser is highly

attenuated, the probability for multi-photon emission is nonzero. It causes bias in the

raw data that is reduced by post-processing operation resulting in random bit generation

at the maximum rate of 96 Mbps. [64]

In [66] the light emitted by an LED is attenuated to the single photon level, and the

intensity of LED is adjusted. To achieve high rates of random number generation, a
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PMT with high sensitivity is utilized for detecting the attenuated light. The pulses

generated from PMT are amplified and are discriminated by a discriminator module which

converts the analog output pulse of the PMT into a digital signal. The discriminator can

distinguish two pulses only if two pulses are separated by about the pulse width, otherwise

they will overlap and form only one pulse. The output of the discriminator is fed into

a time-to-digital-converter (TDC) module which is connected to an FPGA module. In

order to increase the min-entropy (see Section 2.3.5) and reduce the correlation and bias,

the FPGA selects the period of only one single detection and outputs random numbers

corresponding to the arrival time of the selected detection. The bit rate of the random

number generation can reach up to 45 Mbps. [66]

The generator developed in [65] comprises a Si-CMOS-LED light source integrated with

the Si SPAD on a single chip. An FPGA digitizes the time intervals between random

events into bit streams. The maximum bit rate of 1 Mbps is obtained after removing

the bias in the raw data (due to the nonuniform distribution of the time intervals) by

post-processing in a special configuration of XOR gates. [65]

2.2.2.4 Quantum vacuum fluctuations

Fluctuations of the vacuum state using homodyne detection techniques (in which a weak

signal and a strong laser beam, called the local oscillator (LO), interfere on a symmetric

BS to form two output beams with balanced powers) has been used to generate random

numbers. [67, 68] In [67], a homodyne detector (consisting of the vacuum state as the

weak signal and an LO), a bit conversion method and a hash function are used to generate

random numbers. The basic source of entropy for random numbers is the vacuum state

which is a particle-free state that cannot be influenced by a potential attacker because the

vacuum port of the BS is blocked. The LO does not have to be quantum noise limited.

Even if it has some excess noise, it will not create any problems since this noise will be

rejected in the balanced homodyne measurement scheme. [67]

The quadrature measurement of the vacuum state in the quadrature (or equivalently the

position) representation can be written as [67]:

|0〉 =

∫ ∞
−∞

Ψ(x) |x〉 dx, (2.1)

where |x〉 are the amplitude quadrature eigenstates (〈x|x′〉 = δ(x − x′)) and Ψ(x) is the

ground-state wavefunction (a Gaussian function centered around x = 0). The measure-

ment of the amplitude quadrature collapses the wavefunction into quadrature eigenstates.

The outcomes will be unpredictable but biased according to the Gaussian probability

function: |Ψ(x)|2. Unbiased numbers can be obtained by binning the measurement out-

comes such that the integrated probability associated with each bin is equalized; that is:∫ x1

−∞ |Ψ|
2dx =

∫ x2

x1
|Ψ|2dx = ... =

∫∞
xl
|Ψ|2dx, where l + 1 is the number of bins. All the
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measurement outcomes within one bin are assigned a fixed bit combination (see Fig.2.5).

The length of this bit combination depends on the number of bins (for l + 1 = 2n bins,

the length of the bit combination is n). In the approach of Gabriel et al. [67], 32 bins

(corresponding to 5 bits per sample) are considered. After using the hash functions, the

random bits are generated at the rate of ∼6.5 Mbps.

Figure 2.5: The probability distribution of the vacuum state is binned into 2n equal parts

(the same sample size per bin). The random numbers are then produced by assigning a

fixed bit combination of length n to each sample point in a certain bin. An example for

n=1 (left), n=3 (right) is shown here. [67]

The QRNG based on the fluctuations of the vacuum state using homodyne detection

technique in [68] uses an integrated 12 bits, 250 MS/s (mega samples per second) ADC

and an FPGA. The results show a uniformly distributed random binary sequence, where

8 bits (keeping only the most significant bits (MSB) as they are the most accurate repre-

sentation of the vacuum fluctuations) are extracted for each measurement, corresponding

to a real-time random bit rate generation of 2 Gbps. [68]

Extraction of random bits from vacuum fluctuations using optical amplification has been

demonstrated in [69]. The amplification is phase-insensitive, and the phase of the cavity

field remains random. Due to the random phase of the input pulses from the laser diode

(LD), the output signals from an unbalanced Mach-Zehnder interferometer (placed after

the LD) acquire random amplitudes that are sent to a photodiode. The output of the

photodiode is highpass filtered with a cutoff frequency of 40 MHz and it is digitized using

the an oscilloscope with input bandwidth of 200 MHz, sampling speed of 2.5 GS/s and a

12-bit ADC. The random bit generation rate of the QRNG reaches 1.11 Gbps. [69]

In spite of the high efficiency and high bit rate of the QRNGs based on quantum vacuum

fluctuations, careful conditions should be provided to create vacuum fluctuations and to

guarantee the generation of random numbers by vacuum fluctuations and not by deter-

ministic, classical noise.

To have a summary at the end of this section, some of the RNGs proposed in literature or

present as commercial products, with their source of entropy and bit rate, are presented

in Tables 2.1 and 2.2. From this source, it emerges the need for a photonic QRNG which

can be integrated in a single chip.
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Table 2.1: A list of some of the RNGs in literature

Author Year Source of Randomness Bit Rate

Tokunaga et al. [24] 2008 Thermal noise 200 kbps

Uchida et al. [35] 2008 Chaos in laser 1.7 Gbps

Li et al. [38] 2013 Chaos in current oscillations 20, 40, 80 Gbps

Zhang et al. [37] 2017 Chaos in laser 640 Gbps

Jennewein et al. [52] 2000 Beam splitter 1 Mbps

Fürst et al. [56] 2010 Photon counting 50 Mbps

Ren et al. [57] 2011 Photon counting 2.4 Mbps

Stipčević and Rogina [59] 2007 Photon arrival time 1 Mbps

Dynes et al. [61] 2008 Photon arrival time 4.01 Mbps

Wahl et al. [63] 2011 Photon arrival time 152 Mbps

Nie et al. [64] 2014 Photon arrival time 96 Mbps

Khanmohammadi et al. [65] 2015 Photon arrival time 1 Mbps

Wang et al. [66] 2015 Photon arrival time 45 Mbps

Gabriel et al. [67] 2010 Quantum vacuum fluctuations 6.5 Mbps

Jofre et al. [69] 2011 Quantum vacuum fluctuations 1.11 Gbps

Symul et al. [68] 2011 Quantum vacuum fluctuations 2 Gbps

Table 2.2: A list of some of the commercial RNGs

Product Name Source of Randomness Bit Rate

IntelRNG [25] Thermal noise 3 Gbps

Araneus Alea II [28] Avalanche noise 100 kbps

ChaosKey [29] Avalanche noise 350 kbps

TrueRNG [30] Avalnache noise 8 Mbps

HotBits [46] Radioactive decay 800 bps

ComScirerPQ4000KS [51] Shot noise 4 Mbps

Quantis [53] Beam splitter 4, 16 Mbps
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2.3 Assessment of RNGs

Assessment of RNGs is very important to evaluate the quality of randomness of the

generated bits. Some analyses are described in the following subsections.

2.3.1 Autocorrelation

The first thing to avoid when generating random numbers is the “presence” of correlation.

Correlation causes the generation of one bit dependent on another one and, hence, pre-

dictable. Autocorrelation is used to check the existence of correlation among the generated

bits, codes or symbols with a delayed (lagged) copy of them. The plot of the autocorrela-

tion coefficient ρk as a function of the lag k is called the autocorrelation function of {ρk}
of the process. The autocorrelation function is dimensionless, that is, independent of the

scale of measurement of the time series. Considering zt to be the time series, the auto-

correlation coefficient between the two values of zt and zt+k, k = −K . . . K, is calculated

as [70]:

ρk =
E[(zt − µt)(zt+k − µt+k)]

σtσt+k
(2.2)

where E is the expected value operator1, µt and µt+k are the mean values at time t and

t + k and σ2
t and σ2

t+k are the variances at time t and t + k. This expression is not well-

defined for all time series or processes, because the mean may not exist, or the variance

may be zero (for a constant process) or infinite (for processes with distribution lacking

well-behaved moments, such as certain types of power law). If the function ρ is well-

defined, its value must lie in the range [-1, 1], with 1 indicating perfect correlation and -1

indicating perfect anti-correlation. [70]

If zt is a wide-sense stationary (WSS) process then the mean µ and the variance σ2 are

time-independent, and further the autocorrelation depends only on the lag between t and

t+k : the correlation depends only on the time-distance between the pair of values but

not on their position in time.

ρk =
E[(zt − µ)(zt+k − µ)]

σ2
(2.3)

The autocorrelation function is then an even function with ρ−k = ρk. The numerator in

Eq. 2.3 is called the autocovariance function. If zt and zt+k are independent, then their

autocovariance (and hence autocorrelation) is zero.

1The expected value operator over a variable gives the weighted average of all possible values the

variable can take on, where each possible value is weighted by its respective probability.
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The estimated autocorrelations at time lag k1 are computed as [71]:

ρk =
1

T−1

∑T−k
t=1 (zt − µ)(zt+k − µ)

σ2
(2.4)

where T is the length of the time series. The estimated standard error (se) for the

autocorrelation at lag k is:

se(ρk) =

√√√√ 1

T

(
1 + 2

q∑
j=1

ρ2
j

)
(2.5)

where q is the lag beyond which the theoretical autocorrelation function is effectively 0.

If the series is completely random, then the standard error reduces to 1/
√
T . [71]

2.3.2 Visual analysis

A simple, straightforward way to examine a RNG is to a make a visualisation of the

numbers (symbols or codes) it produces. Visualisation, e.g. making a 2-D matrix of

the generated codes o symbols, allows spotting any particular, periodic patterns which

might exists among the numbers. The 2-D matrix can be created by dividing the vector

of random numbers (or a section of it) with k elements into m rows (columns) each

containing n elements (k = m×n) and present it in a 2-D graph placing elements of rows

(columns) on the x-axis. Since the elements are placed one after the other horizontally

and vertically, any pattern existing among them would be observable.

While this type of approach cannot be considered as a formal analysis, it is a quick way to

get a rough impression of a given generator’s performance. A 512x512, 2-D visualization

of the rand() function from PHP on Microsoft Windows, which is a PRNG, can be seen

in Fig. 2.6. A clear, periodic pattern is visible in the figure.

2.3.3 Joint probability mass function

In probability theory, considering at least two random variables Z1 and Z2 that are defined

on a probability space, the joint probability mass function (JPMF) gives the probability

that each of Z1 and Z2 falls into a discrete set of values specified for that variable. It is

computed as [73]:

P(Z1 = z1 and Z2 = z2)

= P(Z1 = z1|Z2 = z2)P(Z2 = z2)

= P(Z2 = z2|Z1 = z1)P(Z1 = z1)

(2.6)

1Autocorrelations used in Matlab program and used in the following chapters for the autocorrelation

of the random sequences
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Figure 2.6: A 512x512, 2-D visualization of the rand() function from PHP on Microsoft

Windows. The figure is taken from [72].

where P(Z1 = z1|Z2 = z2) and P(Z2 = z2|Z1 = z1) are conditional probabilities that give

the probability of Z 1=z1 and Z 2=z2 given that Z 2=z2 and Z 1=z1, respectively. In the

case of n discrete random variables Z1 ... Zn, the joint probability distribution is:

P(Z1 = z1, . . . , Zn = zn) =
n∏
i=1

P(Zi = zi|
i−1⋂
j=1

Zj = zj)

= P(Zn = zn|Zn−1 = zn−1, . . . , Z1 = z1) . . .

· P(Z3 = z3|Z2 = z2, Z1 = z1)

· P(Z2 = z2|Z1 = z1) · P(Z1 = z1)

(2.7)

This is called the chain rule of probability. The sum of all JPMFs over all random variables

gives 1. If the discrete random variables are independent, the JPMF will be the product

of the marginal probabilities. Therefore, in the case of 2 discrete random variables we can

write:

P(Z1 = z1 and Z2 = z2) = P(Z1 = z1) · P(Z2 = z2) (2.8)

If we consider a time series zt of 16 hexadecimal symbols {1, 2, . . . , E, F} (as in Chap-

ters 4, 5 and 7), to calculate the JPMF of having any one symbol after the other one for

any two variables z1 and z2 ∈ {0, 1, . . . , E, F}, one can count the number of times that z2

occurred after z1 and dividing by the total number of all possibilities of a pair of symbols,

obtains the JPMF for z1 and z2.
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2.3.4 Mutual information

In probability theory, the mutual information (MI) of two random variables is a measure

of the mutual dependence between the two variables. More specifically, it quantifies the

“amount of information” (in units such as bits) obtained about one random variable,

through the other random variable. It is computed by the formula below [74]:

I(Z1;Z2) =
∑
z1∈Z1

∑
z2∈Z2

P(z1, z2) log

(
P(z1, z2)

P(z1)P(z2)

)
(2.9)

where P(z1, z2) is the joint probability mass function of random variables Z1 and Z2, and

P(z1) and P(z2) are the marginal probability functions of Z1 and Z2, respectively.

I(Z1;Z2) = 0 if and only if Z1 and Z2 are independent random variables. If Z1 and Z2

are independent, then P(z1, z2) = P(z1) · P(z2), and therefore:

log

(
P(z1, z2)

P(z1) P(z2)

)
= log 1 = 0 (2.10)

MI is symmetric, i.e. I(Z1;Z2) = I(Z2;Z1), and is nonnegative, i.e. I(Z1;Z2) ≥ 0.

In the case of a time series zt of 16 hexadecimal symbols, the MI among all pairs of

symbols is computed as:

I =
F∑
i=0

F∑
j=0

P(i, j) log

(
P(i, j)

P(i)P(j)

)
(2.11)

where i and j are hexadecimal symbols ∈ {0, 1, . . . , E, F}.

2.3.5 Entropy

In an ideal random sequence each bit is unpredictable and unbiased. The probability of

observing each bit with a particular value is unaffected by the knowledge of the values of

all the other bits. Entropy is intuitively defined as a measure of uncertainty. An ideal

random sequence of n bits contains n bits of entropy. In information theory, the Rényi

entropy of order β is defined as [75]:

Hβ(Z) =
1

1− β
logb

 ¯̄Z∑
i=1

Pβ(Z = zi)

 (2.12)

where β ≥ 0 and β 6= 1 and Z is a discrete random variable with size ¯̄Z = n. If b is

equal to 2, Euler’s number e, and 10, and the unit of entropy is called Shannon, nat, and

Hartley, respectively. When b = 2, the unit of entropy is referred to as bits.

Depending on the value of β the following entropies are formulated as:

26



Chapter 2. Physical RNGs

• if β → 0, the measure of entropy is called the Hartley entropy or max-entropy [76]:

H ≡ H0 = logb(
¯̄Z) (2.13)

which is equivalent to the case of a uniform probability distribution where the

probabilities are P(Z = zi) = 1/ ¯̄Z for all zi = z1, . . . , zn.

• the limit of β → 1, gives the Shannon entropy [77]:

H ≡ H1 = −
¯̄Z∑
i=1

P(Z = zi) logb P(Z = zi) (2.14)

• if β = 2 the Rényi entropy is known as the collision entropy [78]:

H ≡ H2 = − log

¯̄Z∑
i=1

P2(Z = zi) (2.15)

where P2(Z = zi) is called the “collision probability of a random variable Z” since

if we let Z
′

be another random variable with identical associated probability dis-

tribution as Z but independent of it, the probability of Z and Z
′

colliding, i.e. of

yielding the same value, is equal to the expression:

¯̄Z∑
i=1

P(Z = zi, Z
′
= zi) =

¯̄Z∑
i=1

P(Z = zi) P(Z
′
= zi) =

¯̄Z∑
i=1

P2(Z = zi) (2.16)

where we used the independence of Z and Z
′

first and then the fact that the asso-

ciated probability distributions are the same.

• in the case of β →∞ the Rényi entropy Hβ converges to the min-entropy [78, 79]:

H ≡ H∞ = − log P = − log max(pzi) (2.17)

where pzi is a given finite probability distribution for a random variable Z.

The various Rényi entropies are all equal for a uniform distribution, but they measure the

unpredictability of a nonuniform distribution in different ways. Min-entropy is defined as

the lower bound on the entropy of a random variable. It is often used as a worst-case

measure of the unpredictability of observations z since it is the negative logarithm of the

probability of the most likely outcome. In this sense, it is the strongest way to measure

the information content of a discrete random variable. If zi has the min-entropy m, then

the probability of observing any particular value is no greater than 2−m. [80]
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2.3.6 Bias

In statistics, bias is a feature of a process or its results where the obtained value of a a

parameter differs from its expected value. It is an undesirable effect in random processes

causing a departure from the theoretical expected value. For instance, in the case of an

“unfair” dice, the probability of the output for each of the six values of {1, 2, 3, 4, 5, 6}
would not be exactly 1/6. The difference between the obtained value and the expected,

theoretical value defines the bias and the maximum difference is called the “maximum

bias”. As the bias increases, the process gets farther and farther from a random process.

If we have a sequence of 0 and 1 binary bits, the maximum bias is computed as the absolute

value of the maximum departure from 1/2. In the case of a sequence of hexadecimal

symbols {0, 1, . . . , E, F}, the absolute value of maximum deviation from the expected,

theoretical probability value of 1/16 gives the maximum bias. Acceptable values of bias

are < 10−4 in order to pass the statistical tests particularly the frequency test (explained

in Section 2.3.7.1.1).

2.3.7 Statistical tests

Various statistical tests can be applied to a sequence to attempt to compare and evaluate

the sequence to a truly random sequence. Randomness is a probabilistic property; that

is, the properties of a random sequence can be characterized and described in terms

of probability. The likely outcome of statistical tests, when applied to a truly random

sequence, is known a priori and can be described in probabilistic terms. There is an infinite

number of possible statistical tests, each assessing the presence or absence of a “pattern”’

which, if detected, would indicate that the sequence is nonrandom. Two typical tests

suites of the National Institute of Standards and Technology (NIST) and TestU01 are

explained in the following. Since the NIST package contains tests to examine and certify

RNGs used in cryptographic applications and the Alphabit battery in TestU01 has been

defined to test physical RNGs, we will use these two suites in the thesis.

2.3.7.1 NIST tests suite

The NIST test suite is a statistical package consisting of 15 tests that were developed to

test the randomness of (arbitrarily long) binary sequences produced by random number

generators. These tests focus on a variety of different types of non-randomness that could

exist in a sequence. Some tests are decomposable into a variety of subtests. The 15 tests

are [81]:

1. The Frequency (Monobit) Test,

2. Frequency Test within a Block,
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3. The Runs Test,

4. Test for the Longest-Run-of-Ones in a Block,

5. The Binary Matrix Rank Test,

6. The Discrete Fourier Transform (Spectral) Test,

7. The Non-overlapping Template Matching Test,

8. The Overlapping Template Matching Test,

9. Maurer’s ”Universal Statistical” Test,

10. The Linear Complexity Test,

11. The Serial Test,

12. The Approximate Entropy Test,

13. The Cumulative Sums (Cusums) Test,

14. The Random Excursions Test, and

15. The Random Excursions Variant Test

A number of tests in the test suite have the standard normal and the chi-square (χ2) as

reference distributions. If the sequence under test is in fact non-random, the calculated

test statistic will fall in extreme regions of the reference distribution. The standard normal

distribution (i.e., Gaussian function) is used to compare the value of the test statistic

obtained from the RNG with the expected value of the statistic under the assumption

of randomness. The test statistic for the standard normal distribution is of the form

z = (x− µ)/σ, where x is the sample test statistic value, and µ and σ2 are the expected

value and the variance of the test statistic. The χ2 distribution (i.e., a left skewed curve) is

used to compare the goodness-of-fit of the observed frequencies of a sample measure to the

corresponding expected frequencies of the hypothesized distribution. The test statistic is

of the form χ2 =
∑( (Oi−Ei)2

Ei

)
, where Oi and Ei are the observed and expected frequencies

of occurrence of the measure, respectively. [81]

In the following, short descriptions on the 15 statistical tests in NIST tests suite are

presented. The order of the application of the tests in the NIST tests suite is arbitrary.

However, it is recommended that the Frequency test be run first, since this supplies the

most basic evidence for the existence of non-randomness in a sequence, specifically, non-

uniformity. If this test fails, the likelihood of other tests failing is high. In the following

descriptions, ¯̄Z is the length of the sequence of bits (z = z1, z2, . . . , zn) generated by the
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RNG. The P-value is defined as the probability, under the assumption of a hypothesis

(e.g. the hypothesis that a sequence is random), of obtaining a result equal to or more

extreme than what is actually observed. For all the tests, if the computed P-value is

< 0.01, we conclude that the sequence is non-random. Otherwise, we conclude that the

sequence is random.

2.3.7.1.1 Frequency test

The Frequency test monitors the proportion of zeroes and ones for a sequence. The

purpose of this test is to determine whether the number of ones and zeros in a sequence

are approximately the same as would be expected for a truly random sequence. The test

assesses the closeness of the fraction of ones to 1/2. All subsequent tests depend on the

passing of this test.

The 0 and 1 bits in the sequence are converted to -1 and +1, respectively. The test is

executed as follows.

1. X is produced as:

X = (2z1 − 1) + (2z2 − 1) + · · ·+ (2zn − 1)

2. The test statistic (s) is then computed as:

s =
|X|√

¯̄Z

3. The P-value is computed as:

P − value = erfc

(
s√
2

)
where erfc is the complementary error function defined as:

erfc(y) =
2√
π

∫ ∞
y

e−u
2

du

If the computedP-value is < 0.01 (at the 1% level), then conclude that the sequence is

non-random. Otherwise, conclude that the sequence is random.

The small P-value (< 0.01) would be caused by X or s being large. Large positive values

of X are indicative of too many ones, and large negative values of X are indicative of too

many zeros
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2.3.7.1.2 Frequency test within a block

The purpose of this test is to determine whether the frequency of ones in an M-bit block

is approximately M/2, as would be expected under an assumption of randomness. For

block size M=1, this test is the same as Frequency (Monobit) test. Considering M to be

the block size, the test runs as follows.

1. The sequence is partitioned into n =
[

¯̄N
M

]
non-overlapping blocks with

[
¯̄N
M

]
to be

the floor function of
¯̄N
M

(that gives the largest integer less than or equal to
¯̄N
M

). The

unused bits are discarded.

2. The proportion of ones is determined in each block as:

πi =

∑M
k=1 z(i−1)M+k

M
for 1 ≤ i ≤ n

3. The test statistic % is computed as:

% = 4M
n∑
i=1

(
πi −

1

2

)2

4. The P-value is computed as:

P − value = igamc
(n

2
,
%

2

)
where igamc is the incomplete gamma function defined as:

igamc (a, b) =
Γ(a, b)

Γ(a)
=

1

Γ(a)

∫ ∞
b

e−tta−1dt

Small P-values (< 0.01) would indicate a large deviation from the equal proportion of

ones and zeros in at least one of the blocks.

2.3.7.1.3 Runs test

The purpose of the Runs test is to determine whether the number of “runs” of ones

and zeros of various lengths is as expected for a random sequence. A run is an uninter-

rupted sequence of identical bits. A run of length k consists of exactly k identical bits and

is bounded before and after with a bit of the opposite value. The Runs test carries out a

Frequency test as a prerequisite (if not initially executed). The test steps are as follows.

1. The pre-test proportion π of ones is computed as:

π =

∑
i zi
¯̄Z
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2. It is determined if the prerequisite Frequency test is passed (if it is not already

executed). If
∣∣π − 1

2

∣∣ ≥ 2√
¯̄Z
, it indicates the failure of the Frequency test and

therefore the Runs test is not applicable setting the P-value to 0.0000. Otherwise,

the Runs test would be applicable and the next step is performed.

3. The test statistic R is computed as:

R =

 ¯̄Z−1∑
j=1

r(j)

+ 1

where r(j) = 0 if zj = zj+1 and r(j) = 1 if zj 6= zj+1.

4. The P-value is computed as:

P − value = erfc


∣∣∣R− 2 ¯̄Zπ(1− π)

∣∣∣
2
√

2 ¯̄Zπ(1− π)


If the computed P-value is < 0.01, then one can conclude that the sequence is non-random.

Otherwise, it is concluded that the sequence is random. A large value for R would have

indicated an oscillation in the string which is too fast; a small value would have indicated

that the oscillation is too slow. An oscillation is considered to be a change from a one

to a zero or vice versa. A fast oscillation occurs when there are a lot of changes, e.g.,

010101010 oscillates with every bit. A stream with a slow oscillation has fewer runs than

would be expected in a random sequence, e.g., a sequence containing 20 ones, followed by

65 zeroes, followed by 115 ones (a total of 200 bits) would have only three runs, whereas

100 runs would be expected.

2.3.7.1.4 Test for the longest run of ones in a block

The purpose of this test is to determine whether the length of the longest run of ones (or

equivalently zeros) within the tested sequence is consistent with the length of the longest

run of ones that would be expected in a random sequence. The test is executed as follows.

1. The sequence is divided into M-bit blocks (M being preset as M=8, M=128 and

M=104).

2. The frequencies fi of the longest runs of ones in each block are put into categories.

For instance, if we consider two blocks of 11100110 and 00101001 in a sequence, the

maximum runs of ones are 3 and 1, respectively. Then the number of each maximum

runs of ones is counted as f0, f1, ...; For M=8, f0 is the frequency for maximum runs

of≤1 and f3 is the last frequency for maximum runs ≥4. For M=128, f0 is the
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frequency for maximum runs of≤4 and f5 is the last frequency for maximum runs

≥9. And for M=104, f0 is the frequency for maximum runs of≤10 and f6 is the last

frequency for maximum runs ≥16.

3. The test statistics is computed then as:

χ2 =
K∑
i=0

(fi −Nπi)2

Nπi

with K and N determined by the value of M as:

• M=8, K=3 and N=16

• M=128, K=5 and N=49

• M=104, K=6 and N=75.

πi is the probability defined for each value of K and M.

4. The P-value is computed as:

P-value = igamc

(
K

2
,
χ2

2

)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Oth-

erwise, conclude that the sequence is random. Large values of χ2 indicate that the tested

sequence has clusters of ones.

2.3.7.1.5 Binary matrix rank test

The purpose of this test is to check for linear dependence among fixed length substrings

of the original sequence. The test is run as:

1. The sequence is divided into M.Q-bit (M being the number of rows and Q the number

of columns) disjoint blocks. There will exist N =
[

¯̄Z
MQ

]
such blocks. Discarded bits

will be reported as not being used in the computation within each block. The rows

of the matrix are filled with successive Q-bit blocks of the original sequence z.

2. The binary rank (Rl l=1,...,N) of each matrix is determined. It is done as follows.

The rank of each matrix would be the number of rows it contains. If some rows

contain the same binary strings, they are counted only once.

3. The number of matrices with full rank (FM), full rank minus one (FM-1) and the

remaining matrices (N-FM-FM-1) are counted.
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4. The test statistics χ2 is then computed as:

χ2 =
(FM − 0.2888N)2

0.2888N
+

(FM−1 − 0.5776N)2

0.5776N
+

(N − FM − FM−1 − 0.1336N)

0.1336N

5. P-value is computed as:

P-value = e−χ
2/2

If the computed P-value is < 0.01, we conclude that the sequence is non-random. Oth-

erwise, we conclude that the sequence is random. Large values of χ2 (and hence, small

P-values) would indicate a deviation of the rank distribution from that corresponding to

a random sequence.

2.3.7.1.6 Discrete Fourier transform (spectral) test

The purpose of this test is to detect periodic patterns in the tested sequence that would in-

dicate a deviation from the assumption of randomness. The intention is to detect whether

the number of peaks exceeding the 95% threshold is significantly different than 5%. The

steps taken in this test are:

1. The zeros and ones of the input sequence (z ) are converted to values of –1 and +1,

respectively, to create the sequence x = x1, x2, ..., xn, where xi = 2zi—1.

2. Discrete Fourier transform is applied on x creating a sequence of complex variables

which represents periodic components of the sequence of bits at different frequencies:

s=DFT(x ).

3. Modulus of s
′

which is the half substring of s is calculated m=modulus(s
′
). m is a

sequence of peak heights.

4. T =
√(

log 1
0.05

)
n=the 95% peak height threshold value. Under an assumption of

randomness, 95% of the values obtained from the test should not exceed T.

5. the expected theoretical (95%) number of peaks (under the assumption of random-

ness) that are less than T is computed as: N0=0.95n/2.

6. The actual number of peaks in m that are less than T is computed.

7. The normalized difference between the observed and the expected number of fre-

quency components that are beyond the 95% threshold is computed as:

d =
(N1 −N0)√
n(0.95)(0.05)/4
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8. P-value is computed as:

P-value = erfc

(
|d|√

2

)
A d value that is too low would indicate that there are too few peaks (< 95%) below T,

and too many peaks (more than 5%) above T.

2.3.7.1.7 Non-overlapping template matching test

The purpose of this test is to detect if too many occurrences of a given non-periodic

(aperiodic) pattern are produced by a generator. The test is executed as follows.

1. The sequence is partitioned into N independent blocks of length M.

2. The number of times that B (the template) occurs within the block j is counted as

nj j=1, ..., N. The search for matches proceeds by creating an m-bit (m being the

length of the template) window on the sequence, comparing the bits within that

window against the template. If there is no match, the window slides over one bit ,

e.g., if m=4 and the current window contains bits 4 to 7, then the next window will

contain bits 5 to 8. If there is a match, the window slides over m bits, e.g., if the

current (successful) window contains bits 4 to 7, then the next window will contain

bits 8 to 11.

3. Under an assumption of randomness, the theoretical mean µ and variance σ2 are

computed as:

M =
(M −m+ 1)

2m
σ2 = M

(
1

2m
− 2m− 1

22m

)
4. The test statistic which measures how well the observed number of template “hits”

matches the expected number of template “hits” under an assumption of random-

ness, is computed as:

χ2 =
N∑
j=1

(nj − µ)2

σ2

5. The P-value is computed as:

P-value = igamc

(
N

2
,
χ2

2

)
Multiple P-values will be computed, i.e., OneP-value will be computed for each

template. For m=9 for example, up to 148 P-values may be computed; for m = 10,

up to 284 P-values may be computed.

If the computed P-value is < 0.01, it shows that the sequence has irregular occurrences

of the possible template patterns and we can conclude that the sequence is non-random.
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2.3.7.1.8 Overlapping template matching test

This test is meant to check the number of occurrences of pre-specified target strings.

Both this test and the non-overlapping template matching test use an m-bit window to

search for a specific m-bit pattern. The difference between them is that in this test when

the pattern is found, the window slides only one bit before resuming the search. The test

steps in order are as follows.

1. The sequence is partitioned into N independent blocks of length M.

2. The number of occurrences of B in each of the N blocks is calculated. The search

for matches proceeds by creating an m-bit window on the sequence, comparing the

bits within that window against B and incrementing a counter when there is a

match. The window slides over one bit after each examination, record the number

of occurrences of B in each block by incrementing an array νi (where i = 0, ...,

5), such that ν0 is incremented when there are no occurrences of B in a substring,

ν1 is incremented for one occurrence of B, ... and ν5 is incremented for 5 or more

occurrences of B.

3. The values for λ and η are computed to be used for the theoretical probabilities πi

corresponding to the νi:

λ =
(M −m+ 1)

2m
η =

λ

2

4. χ2 is computed as:

χ2 =
5∑
i=0

(νi −Nπi)2

Nπi

where π0 = 0.364091, π1 = 0.185659, π2 = 0.139381, π3 = 0.100571, π4 = 0.070432

and π5 = 0.139865 for 5 degrees of freedom. [82]

5. The P-value is then computed as:

P-value = igamc

(
5

2
,
χ2

2

)

2.3.7.1.9 Maurer’s “universal statistical” test

The purpose of this test is to detect whether the sequence can be significantly com-

pressed without loss of information. A significantly compressible sequence is considered

to be non-random. The test is run as follows.
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1. The sequence (z ) is partitioned into two segments: an initialization segment con-

sisting of Q L-bit non-overlapping blocks, and a test segment consisting of K L-bit

non-overlapping blocks. Bits remaining at the end of the sequence that do not form

a complete L-bit block are discarded.

2. A table is created for each possible L-bit value in the segment partition. The block

number of the last occurrence of each L-bit block is put in the table (i.e., For i from

1 to Q, Tj= i, where j is the decimal representation of the contents of the kth L-bit

block).

3. Each of the K blocks in the test segment is examined and the number of blocks since

the last occurrence of the same L-bit block is determined. The values in the table

are replaced with the location of the current block (i.e., Tj = i). The calculated

distance between re-occurrences of the same L-bit block (in segment partition) is

added to an accumulating log2 sum of all the differences detected in the K blocks

(i.e., sum = sum+ log 2(i
′
–i)), i

′
being the number of block in the test segment.

4. The test statistic, which is the sum of the number of digits in the distance between

L-bit templates with the reference distribution of half-normal distribution (a one-

sided variant of the normal distribution) as in the case for the Frequency test, is

computed as:

s =
1

K

Q+K∑
i′=Q+1

log 2(i
′ − i)

5. P-value is computed as:

P-value = erfc

(∣∣∣∣s− < L >√
2σ

∣∣∣∣)
where < L > is the expected value of L that is precomputed together with σ. [2]

If s differs significantly from < L >, then the sequence is significantly compressible.

2.3.7.1.10 Linear complexity test

The purpose of this test is to determine if the sequence is complex enough to be con-

sidered random. Random sequences are characterized by longer linear feedback shift

registers (LFSRs). An LFSR that is too short implies non-randomness. The following

steps are taken to execute the test.

1. The sequence is partitioned into N independent blocks of M bits, where n = MN.

37



Chapter 2. Physical RNGs

2. The linear complexity of each of the N blocks (Li i= 1, ..., N) is determined by

the Berlekamp-Massey algorithm. [2] Li is the length of the shortest LFSR sequence

that generates all bits in the block i. Some combination of the bits within any Li-bit

sequence, when added together modulo 2, produces the next bit in the sequence (bit

Li + 1).

3. Under the assumption of randomness, the theoretical mean µ is calculated:

µ =
M

2
+

(9 + (−1)M+1)

36
−
(
M
3

+ 2
9

)
2M

4. For each substring, a value of Ti is calculated as:

Ti = (−1)M(Li −M) +
2

9

5. The Ti values are recorded in ν0, . . . , ν6 as follows:

if: Ti ≤ −2.5 increment ν0 by 1

−2.5 < Ti ≤ −1.5 increment ν1 by 1

−1.5 < Ti ≤ −0.5 increment ν2 by 1

−0.5 < Ti ≤ 0.5 increment ν3 by 1

0.5 < Ti ≤ 1.5 increment ν4 by 1

1.5 < Ti ≤ 2.5 increment ν5 by 1

Ti > 2.5 increment ν6 by 1

6. The test statistic which is a measure of how well the observed number of occur-

rences of fixed length LFSRs matches the expected number of occurrences under an

assumption of randomness is computed as:

χ2 =
K∑
i=0

(νi −Nπi)2

Nπi

where π0 = 0.010417, π1 = 0.03125, π2 = 0.125, π3 = 0.5,π4 = 0.25, π5 = 0.0625

and π6 = 0.020833.

7. P-value is computed as:

P-value = igamc

(
K

2
,
χ2

2

)
The computed P-value are < 0.01 would indicate that the observed frequency counts of Ti

stored in the νi bins varied from the expected values. It is expected that the distribution

of the frequency of the Ti (in the νi bins) should be proportional to the computed πi.
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2.3.7.1.11 Serial test

The purpose of this test is to determine whether the number of occurrences of the 2m m-bit

overlapping patterns is approximately the same as would be expected for a random se-

quence. Random sequences have uniformity that means every m-bit pattern has the same

chance of appearing as every other m-bit pattern. For m=1, the Serial test is equivalent

to the Frequency test. The test is executed as follows.

1. The z
′
sequence is formed by appending the first m-1 bits to the end of the sequence

z.

2. The frequency of all possible overlapping m-bit blocks, all possible overlapping (m-

1)-bit blocks and all possible overlapping (m-2)-bit blocks are determined. Let

νi1...im denote the frequency of the m-bit pattern i1 . . . im, νi1...im−1 the frequency of

the (m-1)-bit pattern i1 . . . im and νi1...im−2 denote the frequency of the (m-2)-bit

pattern i1 . . . im−2.

3. The following variables are computed:

Ψ2
m =

2m

n

∑
i1...im

(
νi1...im −

n

2m

)2

=
2m

n

∑
i1...im

ν2
i1...im

− n

Ψ2
m−1 =

2m−1

n

∑
i1...im−1

(
νi1...im−1 −

n

2m−1

)2

=
2m−1

n

∑
i1...im−1

ν2
i1...im−1

− n

Ψ2
m−2 =

2m−2

n

∑
i1...im−2

(
νi1...im−2 −

n

2m−2

)2

=
2m−2

n

∑
i1...im−2

ν2
i1...im−2

− n

4. The test statistics which are a measure of how well the observed frequencies of m-bit

patterns match the expected frequencies of the m-bit patterns is computed as:

∇Ψ2
m = Ψ2

m −Ψ2
m−1

∇2Ψ2
m = Ψ2

m − 2Ψ2
m−1 + Ψ2

m−2

5. The P-values are computed as:

P-value1 = igamc
(
2m−2,∇Ψ2

m

)
P-value2 = igamc

(
2m−3,∇2Ψ2

m

)
If ∇Ψ2

m or ∇2Ψ2
m are large then non-uniformity of the m-bit blocks is implied.
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2.3.7.1.12 Approximate entropy test

The purpose of the test is to compare the frequency of overlapping blocks of two consec-

utive lengths (m and m+1) against the expected result for a random sequence. The test

is run as follows.

1. n overlapping m-bit sequences are augmented by appending m-1 bits from the be-

ginning of the sequence to the end of the sequence.

2. A frequency count is made of the n overlapping blocks (e.g., if a block containing zj

to zj+m-1 is examined at time j, then the block containing zj+1 to zj+m is examined at

time j+1). Let the count of the possible m-bit values be represented as Cm
i , where

i is the m-bit value.

3. Cm
i = #(i)

¯̄Z
for each value of i.

4. φ(m) is calculated as:

φ(m) =
2m−1∑
i=0

πilogπi

where πi = Cm
k and k is the corresponding m-bit binary to the decimal value of i.

5. Steps 1-4 are repeated for m+1 instead of m.

6. The test statistic which is a measure of how well the observed value of ApEn(m)

(approximate entropy (m)) matches the expected value is computed as:

χ2 = 2n(log2− ApEn(m)) ApEn(m) = φ(m) − φm+1

7. P-value is computed as:

P-value = igamc

(
2m−1,

χ2

2

)
Small values of ApEn(m) would imply strong regularity and large values would imply

substantial fluctuation or irregularity.

2.3.7.1.13 Cumulative sums (cusums) test

The purpose of the test is to determine whether the cumulative sum of the partial se-

quences occurring in the tested sequence is too large or too small relative to the expected

behavior of that cumulative sum for random sequences. This cumulative sum may be

considered as a random walk. For a random sequence, the excursions of the random walk

should be near zero. For certain types of non-random sequences, the excursions of this

random walk from zero will be large. The test steps are as follows.
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1. A normalized sequence is formed by replacing the zeros with -1 to have a sequence

of –1 and +1 using Xi = 2zi–1.

2. Partial sums Si of successively larger subsequences are computed starting with X1

(if mode = 0) or Xn (if mode = 1). Mode is a switch for applying the test either

forward through the input sequence (mode = 0) or backward through the sequence

(mode = 1). That is, Sk = Sk−1 +Xk for mode 0, and Sk = Sk−1 +Xn−k+1 for mode

1.

3. The test statistic r which is the largest excursion from the origin of the cumulative

sums in the corresponding (-1, +1) sequence with the reference distribution being

the normal distribution is computed as:

r = max1≤k≤n|Sk|

where r is the largest of the absolute values of the partial sums Sk.

4. The P-value is computed as:

P-value = 1−
k=

(
¯̄Z
r
−1

)
/4∑

k=
(
−

¯̄Z
r

+1
)
/4

[
φ

(
(4k + 1)r√

¯̄Z

)
− φ

(
(4k − 1)r√

¯̄Z

)]

+

k=
(

¯̄Z
r
−3

)
/4∑

k=
(
−

¯̄Z
r
−1

)
/4

[
φ

(
(4k + 3)r√

¯̄Z

)
− φ

(
(4k + 1)r√

¯̄Z

)]

When mode=0 (1), large values of this statistic indicate that there are either “too many

ones” or “too many zeros” at the beginning stages of the sequence (at the late stages).

Small values of the statistic would indicate that ones and zeros are intermixed too evenly.

2.3.7.1.14 Random excursions test

The purpose of this test is to determine if the number of visits to a particular state

within a cycle (a sequence of steps of unit length taken at random that begin at and

return to the origin) deviates from what one would expect for a random sequence. This

test is a series of eight tests, one test and conclusion for each of the states: -4, -3, -2, -1

and +1, +2, +3, +4. The test steps are taken as follows.

1. A normalized sequence Xi is formed by replacing 0 with -1.

2. The partial sums Si is computed each starting with X1 such that S1 = X1, S2 =

X1 +X2, ..., Sn = X1 + · · ·+Xn.
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3. A new sequence of S
′

is formed by putting one 0 at the beginning and one 0 at the

end such that: S
′
= 0, S1, . . . , Sn.

4. The total number of zero crossings q (a value of zero in S
′

that occurs after the

starting zero) in S
′

is counted. q is also the number of cycles in S
′
. A cycle of S

′

is defined as a subsequence of S
′

consisting of a zero, followed by no-zero values,

and ending with another zero. The ending zero in one cycle may be the beginning

zero in another cycle. The number of cycles in S
′

is the number of zero crossings.

If q < 500, discontinue the test.

5. The frequency of the state values of x = −4,−3,−2,−1 and x = 1, 2, 3, 4 within

each cycle is computed.

6. For each eight states of x, νk(x) is computed that is the total number of cycles in

which state x occurs exactly k times among all cycles. For instance, for k = 5, all

frequencies ≥ 5 are stored in ν5(x) with
∑5

k=0 νk(x) = q.

7. For each of the eight states of x, the test statistic ,which is a measure of how well

the observed number of state visits within a cycle match the expected number of

state visits within a cycle, under an assumption of randomness, is computed as:

χ2 =
5∑

k=0

(νk(x)− qπk(x))2

qπk(x)

where πk(x) is the probability that the state x occurs k times in a random distribu-

tion.

8. For each state of x, a P-value is computed as:

P-value = igamc

(
5

2
,
χ2

2

)

If χ2 is too large, then the sequence would display a deviation from the theoretical distri-

bution for a given state across all cycles.

2.3.7.1.15 Random excursions variant test

The purpose of this test is to detect deviations from the expected number of visits to

various states in the random walk. This test is a series of eighteen tests, one test and

conclusion for each of the states: -9, -8, ..., -1 and +1, +2, ..., +9. The test is executed

as follows.

1. This step is the same as the first step in the random excursions test (Section 2.3.7.1.16).
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2. This step is also the same as the second step in the random excursions test (Sec-

tion 2.3.7.1.16).

3. This step is the same as the third step in the random excursions test (Section 2.3.7.1.16).

4. For each of the eighteen non-zero states of x, ξ(x) is computed that is the total

number of times that state x occurred across all q cycles. The reference distribution

for the test statistic is the half normal (for large ¯̄Z). If ξ is distributed as normal,

then |ξ| is distributed as half normal. If the sequence is random, then the test

statistic will be about 0. If there are too many ones or too many zeros, then the

test statistic will be large.

5. For each ξ(x) the P-value is computed as:

P-value = erfc

(
|ξ(x)− q|

2q (4|x| − 2)

)

2.3.7.1.16 Test results interpretation

The final analysis file of the NIST tests suite contains the results of two forms of analysis:

• proportion of sequences passing a test

• uniform distribution of P-values

In the event that either of these approaches fails (i.e., the corresponding null hypothesis

must be rejected), additional numerical experiments should be conducted on different

samples of the generator to determine whether the phenomenon was a statistical anomaly

or a clear evidence of non-randomness.

Given the empirical results for a particular statistical test, the proportion of sequences

that pass can be computed. First the number of binary sequences with P-value > 0.01 is

counted and is divided by the total number of sequences to give the proportion. Then,

the range of the acceptable proportions is determined using the confidence interval (CI)

defined as:

CI = p̂± 3

√
p̂(1− p̂)
m

where p̂ = 1− α and m is the sample size (the number of binary sequences). To pass the

test, the proportion should lie above the minimum limit of CI. The confidence interval is

calculated using a normal distribution as an approximation to the binomial distribution,

which is reasonably accurate for large sample sizes m ≥ 1000.

The distribution of P-values is examined to ensure uniformity. The interval between 0

and 1 is divided into 10 sub-intervals, and the P-values that lie within each sub-interval
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are counted. The uniformity is determined via an application of a χ2 test and the de-

termination of a P-value corresponding to the goodness of fit distributional test on the

P-values obtained for an arbitrary statistical test. This is accomplised by computing:

χ2 =
10∑
i=1

(
wi − m

10

)
m
10

where wi is the number of P-values in subinterval i and m is the sample size. Then, a

P-valueT is computed which is the P-value of the P-values :

P-valueT = igamc

(
9

2
,
χ2

2

)
.

If P-valueT ≥ 0.0001, then the sequences can be considered to be uniformly distributed.

To provided statistically meaningful results at least 55 sequences must be processed.

2.3.7.2 TestU01 suite

TestU01 is a software library, implemented in the American National Standards Institute

(ANSI) C language, and offering a collection of utilities for the empirical statistical testing

of uniform random number generators. It provides general implementations of the classical

statistical tests for random number generators, as well as several others proposed in the

literature, and some original ones. These tests can be applied to the generators predefined

in the library and to user-defined generators. The batteries Alphabit and Rabbit can be

applied on a binary file considered as a source of random bits. Alphabit has been defined

to test physical (hardware) random bits generators. When invoking the battery, one must

specify the number of bits (nB) available for each test. The Alphabit apply 17 different

statistical tests of Multinomial Bits Over, Hamming tests and Random Walk. [83] The

multinomial Bits Over test is similar to overlapping template matching test in NIST tests

suite. Hamming tests and Random Walk, however, provide more stringent testing for

random sequences. TestU01 is widely considered as the most comprehensive and stringent

battery of tests. [84] It is most suitable for fast RNGs since sequences of at least 1 G-bit

length are required to be provided for the tests in the Alphabit and Rabbit batteries.

2.3.7.2.1 Multinomial bits over

The purpose of this test is to determine uniformity between successive bits in overlapping

blocks of length L=2, 4, 8 and 16. Let k = 2L be the number of cells, for L. Each cell

number is generated by taking L successive bits from the sequence with overlap. This

test is similar to overlapping template matching test described in Section 2.3.7.1.8.
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2.3.7.2.2 Hamming tests

Two tests are analyzed here: Hamming correlation and Hamming independence. Ham-

ming correlation applies a correlation test on the Hamming weights of successive blocks

of L bits. n blocks of L (fixed as L=32 in the tests suite) bits. Let Xj be the Hamming

weight (the numbers of bits equal to 1) of the jth block, for j = 1,..., n. The test computes

the empirical correlation between the successive Xj
’s as:

ρ̂ =
4

(n− 1)L

n−1∑
j=1

(
Xj −

L

2

)(
Xj+1 −

L

2

)

Under H0 (the null hypothesis under which the random variables are assumed to be

uniformly distributed in the set of all possible sequences), as n → ∞, ρ̂
√
n− 1 has

asymptotically the standard normal distribution. This is what is used in the test. The

test is valid only for large n.

Hamming independence applies a test of independence between the Hamming weights of

successive blocks of L (fixed as L=16 in the tests suite) bits. 2n blocks of L bits are built.

Let Xj be the Hamming weight (the numbers of bits equal to 1) of the jth block, for j =

1, ..., 2n. Each vector (Xi, Xi+1) can take (L + 1) × (L + 1) possible values. The test

counts the number of occurrences of each possibility among the non-overlapping pairs

{(X2j−1, X2j}, 1 ≤ j ≤ n, and compares these observations with the expected numbers

under H0 through a chi-square test.

2.3.7.2.3 Random walk

From a bit sequence of length ¯̄Z, a random walk is defined as Xk =
∑k

j=1(2zj − 1) for

k > 0 with X0 = 0, like in the case of random excursions explained in Section 2.3.7.1.16.

In the two tests of random walk in Alphabit battery of testU01 with parameters L0 = 64,

L1 = 64 and L0 = 320, L1 = 320 (which define blocks of 64 and 320 bits), five P-values

are computed for each test on the test statistics of H, M, J, R and c. H is the number

of steps to the right, M the maximum value reached by the walk, J the fraction of time

spent on the right of the origin, R the number of returns to 0 and C the number of sign
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changes. They are computed as:

H =
¯̄z

2
+
X¯̄z

2

M = maxXk 0 ≤ k ≤ ¯̄z

J = 2

¯̄z/2∑
k=1

I[X2k−1 > 0]

R =

¯̄z∑
k=1

I[Xk = 0]

C =

¯̄z∑
k=3

I[Xk−2Xk < 0]

where I is the indicator function. The empirical distributions of the test statistics are

then compared with the corresponding theoretical ones via a chi-square test. [85]
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Silicon Nanocrystals LED for

Quantum Random Number

Generator

In this chapter, we first describe the formation of silicon nanocrystals (Si-NCs) via plasma

enhanced chemical vapor deposition (PECVD). Then, the fabrication and electrical and

optical properties of the Si-NCs LED are explained. At the end of the chapter, an approach

to generate quantum random numbers exploiting light from the Si-NCs LED is introduced

and studied in details.

3.1 Si-NCs LED

Si is an indirect band-gap semiconductor and is inefficient to emit light in the visible

range of electromagnetic radiation. [86] It can emit light in the near infrared due to weak

band-to-band emission at the energy of the band-gap (1.12 eV). Thanks to quantum con-

finement effect based on the Heisenberg uncertainty principle (∆x ∆p ≥ ~/2), Si-NCs or

Si quantum dots (confined in 3 dimensions) can emit light in the visible regime. This

phenomenon is due to the increased overlap of the electron and hole wavefunctions in k

(reciprocal) space when their size in real space decreases. [86]

Si-NCs are CMOS compatible, they can be easily incorporated in integrated configura-

tions, they emit photons with wavelengths in the spectral range detectable by Si detectors

allowing the fabrication of an all-Si-based device and since the spontaneous emission of

photons in a Si-NCs LED is a non-deterministic, quantum mechanical and random pro-

cess, they can be used as a quantum source of randomness to generate random numbers.

Si-NCs are formed through several methods such as laser ablation, ion implantation, de-
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composition of silane, and PECVD. The latter is the method used here1 to grow the

Si-NCs in a silica matrix. In this method, deposited layers of sub-stoichiometric silica

(SiOx) with large excess of Si (called Si rich oxide (SRO) hereafter) are exposed to the

precursor gases of silane (SiH4), nitrous oxide (N2O) and amonia (NH3) and are annealed

at high temperature to grow Si-NCs in the SiO2 matrix with controlled excess of both Si

and N.

By band-gap engineering as described in [87], graded-size multilayer Si-NCs LED are

fabricated with the structure presented in Fig. 3.1 (a) and (b). The substrate (back

contact) is a p-type Si (anode) and the top contact is an n-type polycrytalline Si (cath-

ode). The active area of the graded-size multilayer Si-NCs LED is composed of 6 periods

of SRO/SiO2 films with the nominal thickness of (4/2)-(3/2)-(2/2)-(2/2)-(3/2)-(4/2) nm

annealed at 1150◦C for 30 min and 1000◦C for 60 min to grow Si-NCs by PECVD. The

main advantage of the graded-size structure is that the larger NCs close to the contacts

make the injection of carriers easier to the active area and the smaller NCs in the center

make the emission more efficient. [87]

Figure 3.1: (a) The metal-oxide-semiconductor (MOS) structure of the Si-NCs LED.

The n-type poly Si and the p-type Si (substrate) layers act as the cathode and anode,

respectively. (b) The graded-size structure of the active layer of Si-NCs LED composed of

6 periods of SRO/SiO2 films with the nominal thickness of (4/2)-(3/2)-(2/2)-(2/2)-(3/2)-

(4/2) nm.

Carrier injection into a dielectric like SiO2, with band-gap energy of 9 eV, occurs only

through tunneling. Depending on the voltage applied between cathode and anode (∆V),

there are two different tunneling mechanisms, direct and Fowler-Nordheim (FN) tunnel-

ing. As can be seen in Fig. 3.2, direct tunneling is the dominant tunneling mechanism

when ∆V is low so that both electrons (e) and holes (h) can tunnel through the oxide

layer through a trapezoidal area. At high ∆V, however, FN tunneling dominates and

1Fabricated by Advanced Photonics and Photovoltaics (APP) group at the Foundation of Bruno

Kessler (FBk)
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the tunneling occurs via hot e through a triangular area. The probability of h tunneling

through the oxide layer is low since the potential barrier is higher for h than in the case

of direct tunneling (when ∆V is lower). The e and h injected (“bipolar” injection) into

Si-NCs create excitons which then recombine radiatively emitting photons through spon-

taneous emission mechanism. [86]

In FN tunneling, on the other hand, hot e tunnel through the oxide (the probability of h

tunneling is low since the potential barrier for h to tunnel is higher here than in the case

of direct tunneling), so the final state of the e will be the conduction band of the oxide.

When this e relaxes on the conduction band of the Si-NCs, its excess energy gives rise to

an e − h pair (impact ionization) which may recombine radiatively to produce a photon

(resulting from “unipolar” injection of carries). The tunneling of hot carriers (with high

energy) causes degradation and damage to the oxide layer, and hence low efficiency and

short durability of the device. [88]

Figure 3.2: (a) Direct tunneling of electrons (e) and holes (h)(“bipolar” injection) through

the oxide layer when the voltage difference (∆V) between the cathode (n-type poly Si)

and anode (p-type Si) is low. (b) Fowler-Nordheim (FN) tunneling of hot electrons (e)

(“unipolar” injection) through the oxide layer when ∆V is high.

The power efficiency as a function of current density for the graded-size multilayer Si-NCs

LED is presented in Fig. 3.3. The actual thickness of the active area is 20.0±0.2 nm and

the emitting (gate) area is ∼3.2×10−3 cm2. Two distinct regions are observed, low and

high current density regions, when power efficiency decreases slowly and a rapidly, respec-

tively. The intersection of linear fits of the two regions in Fig. 3.3 indicates the applied

current density of ∼0.3 mA/cm2 or ∆V∼2.9 V (corresponding to the applied electric

field of 1.45 MV/cm at the forward bias of -2.9 V applied to the cathode while keeping

the anode at the ground potential) to the Si-NCs LED. This voltage corresponds to the

energy barrier height (band offset) for e at the Si/SiO2 interface. The e barrier height

controls the onset of FN tunneling as it is schematically shown in Fig. 3.2. Above this

voltage, the FN tunneling dominates while below it, the direct tunneling is the dominant

carrier injection mechanism. Fig. 3.3 shows that the FN regime yields lower efficiency
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than the direct tunneling regime. The direct tunneling is the dominant charge transport

mechanism in LEDs with thin <2.6 nm oxide layers. [89]
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Figure 3.3: Current density versus applied electric field for the graded-size multilayer

Si-NCs LED. The intersection of the linear fits of the two regions indicates the applied

electric field of∼1.45 MV/cm (equivalently ∆V∼2.9 V) which separates dominant bipolar

injection via direct tunneling from dominant unipolar injection through the FN tunneling.

The current density-applied voltage characteristic of the graded-size multilayer Si-NCs

LED can be seen in Fig. 3.4. A quite rectifying behavior is observed. At low forward and

reverse bias, a hysteresis loop is found in both wafers which extends -1.4 V under forward

bias. The hysteresis originates from the charge accumulation within the SRO layer. In-

jected positive charges from the substrate are accumulated under negative forward bias.

This causes a built-in potential that adds to the external bias. This phenomenon causes

the weak increase of current in the hysteresis region. Similarly, the hysteresis loop in

reverse bias region is due to the accumulation of the negative charges.

The Electrolumnescence (EL) spectra of graded-size multilayer Si-NCs at different applied

currents are shown in Fig. 3.5. They were obtained by a Spectra-Pro 2300i monochro-

mator coupled with a nitrogen-cooled charge coupled device (CCD) camera. A broad

distribution of wavelengths is observed around the peak at ∼ 800 nm attributed to the

emission from Si-NCs. The graded-size multilayer Si-NCs LED has some main advantages

over the single layer Si-NCs LED such as high density of Si-NCs, more uniformity in Si-

NCs sizes, lower turn-on voltages, higher current density at low-applied electric fields, and
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Figure 3.4: The current density-applied voltage characteristic of the graded-size multilayer

Si-NCs LED with step-like SRO layers of 4-3-2-2-3-4 nm thickness sandwiched between

layers of SiO2 with the thickness of 2 nm.
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higher power efficiency at low applied currents. [90]
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Figure 3.5: Electroluminescence (EL) spectra of the graded-size multilayer Si-NCs LED

at different applied currents of 1µA, 2µA, 5µA, 10µA, and 15µA.

3.2 Single Photon Avalanche Diode

A single photon avalanche diode (SPAD) is a reverse-biased p-n junction where a carrier,

generated by photon absorption, triggers an avalanche current through impact ioniza-

tion. Compared with avalanche photodiodes (APDs), SPADs are biased far above the

breakdown voltage (the reverse voltage above which a small increase in voltage results

in an exponential increase in the leakage current through the diode). When a carrier

is generated, ionization occurs and continues until the diode either destroys or a circuit

returns the diode to the reverse region. Due to the similar operation of SPAD to a Geiger

counter, SPADs are also known as Geiger-mode avalanche photodiode. SPADs have been

implemented into CMOS technologies and have helped greatly to reduce the cost of the

CMOS-based devices. [91]

As mentioned before, after an avalanche, the SPAD is returned to the condition with

the bias voltage above the breakdown voltage in order to be ready to be ignited again.

The process through which the SPAD is returned to the initial condition (with the bias

voltage above the breakdown voltage) to detect the next photon is called quenching and

the period of time this process takes is called dead time during which the SPAD is blind.

The quenching is done in two different ways, passive and active. Passive quenching is

done by a resistor placed in series with the SPAD. The avalanche current is quenched due

to a voltage drop on a high ballast resistor of 10 kΩ or more. [92]
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Active quenching is used to avoid the slow recovery from avalanche pulses and to exploit

fully the inherent performance of the SPAD. [92] In this type of quenching, rise of the

avalanche pulse is sensed by a fast discriminator through a 50 Ω resistor and reset transi-

tions in short times providing a digital output pulse (synchronous with the photon arrival

time with picosecond time jitter explained in the following). If the SPAD is exposed to a

very high photon count rate (≥ 1/dead time), it avalanches immediately the moment the

bias voltage is restored (after an avalanche) and hence its count rate depart from a linear

relationship with detected light level indicating the saturation of the SPAD. [93] Light

emission (with a broad spectral distribution) from the avalanche region of the Si SPAD

when a coming photon is detected, is a peculiar property of this type of detector. In the

measurements with another detector monitoring light, or if the optical system is such that

light emitted from the Si SPAD is reflected back on itself, this undesired emitted light

can cause some confusion. [91]

The photon detection probability of the SPAD at a particular wavelength λ is the prob-

ability that the e − h pairs, generated by absorbed photons (with wavelength λ) in the

depletion region, trigger an avalanche. [91] The efficiency of photon detection increases

with excess bias voltage (the amount of bias voltage above the breakdown voltage of the

SPAD), since a higher electric field enhances the triggering probability. [92]

Even in the absence of light, thermally generated carriers may trigger an avalanche in the

depletion region of the SPAD generating some counts known as dark counts. The dark

count rate (DCR) increases with excess bias voltage. [92] Traps energy levels formed close

to the energy bands can hold carriers during the avalanche process with a release lifetime

in the order of nanoseconds. [91] The released carriers may then trigger an avalanche

resulting in a pulse called afterpulse. Afterpulses are undesired pulses that are highly

correlated to the real pulses resulting from a photon absorption.

Timing jitter of the SPAD is the variation in delay between the absorption of a photon and

the generation of an output electrical pulse. To measure the timing jitter of a detector, a

picosecond laser and high-resolution electronics (a high-resolution TDC) are required to

ensure that the dominant jitter is that of the detector and to give the instrument response

of the SPAD. [94] Full width at half maximum (FWHM) of the instrument response func-

tion determines the timing jitter of the detector. It should be noted that many detectors

have a non-Gaussian instrument response function. Jitter in the SPAD is an undesirable

effect that causes the counts to shift into neighbouring clock cycles. [94]

3.3 QRNG based on Si-NCs LED

As mentioned before in Chapters 1 and 2, the chief assets of intrinsic indeterminacy

and randomness in quantum physics can be utilized. Truly random numbers have been
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generated by exploiting the non-deterministic nature of quantum phenomena. Quantum

dots [95, 96], SPAD [97], light emitting devices (LEDs) [54, 63, 98], and laser [61, 99, 100,

101, 57, 102, 103] have been employed as sources of entropy to produce random numbers.

In this section, we introduce a QRNG which is able to produce sequences of random

bits with a very negligible bias that pass all the NIST tests without the need of a post-

processing algorithm for small datasets (∼100 Mbits). It is based on silicon nanocrystals

(Si-NCs) LED as the source of entropy coupled with a SPAD as the detector. [104, 105,

106, 107, 108] At low applied currents, the Si-NCs LEDs act like an attenuated source

of light with a Poisson distribution (see Appendix. B) in photon counts statistics. [107]

Since the spontaneous emission of photons in Si-NCs LEDs is of non-deterministic quan-

tum nature and considering the fact that these LEDs are CMOS compatible, employing

them for the production of QRNGs is beneficial. The architecture where a Si LED and a

Si SPAD are coupled can yield a compact and cheap QNRG fabricated by standard mi-

croelectronic processes. Furthermore, its performance can be greatly increased exploiting

CMOS scalability.

3.3.1 Theory

3.3.1.1 Test for the Poisson distribution

As mentioned before, photons are emitted spontaneously in a Si-NCs LED. The sponta-

neous emission of photons in an LED is a non-deterministic, random process. There are

several tests to examine whether a sample of observations comes from a Poisson distribu-

tion. [109] To test if the recorded data follow a Poisson distribution, we make use of the

chi-squared (χ2) statistic which compares observed data with the expected data we would

obtain according to the null hypothesis that the data comes from a Poisson distribution.

Let y1, ..., yn be independent, non-negative integer variables from a distribution P1, the

null and the alternative hypotheses then state that the distribution comes from a Poisson

distribution P2 or not, respectively:

H1 : P1 = P2 (3.1)

H2 : P1 6= P2 (3.2)

The p-value which is the chi-square cumulative distribution function is calculated as [110]:

P =

∫ x

0

t(d−2)/2e−t/2

2d/2Γ(d/2)
dt (3.3)

where x is the calculated value of χ2, d the degree of freedom and Γ the gamma function.

Considering a significance level α, if the p-value is larger than this level (p-value> α),

the null hypothesis is accepted, otherwise the alternative hypothesis is accepted which
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indicates that the observed data does not come from a Poisson distribution.

Through the cross-correlation measurement which is the measurement of how similar the

two random variables are as a function of the shifts of one relative to the other [111], we

can check whether there exists a strong correlation between the two random variables.

The measurement is based on the random transmission of the emitted photons from the

source (e.g. Si-NCs LED) into two arms of a fiber beam splitter (as presented in Fig. 3.8)

each connected to a detector (e.g. a SPAD). The output signal of the two detectors are

then sent to a cross-correlator where the cross-correlation function, g2(τ), is computed.

A peak in the cross-correlogram indicates photon bunching while a dip shows anti-

bunching. Photon bunching occurs in the case of chaotic or thermal light which has

a super-Poissonian distribution with the mean greater than the variance and photon

number fluctuations larger than a coherent light. Photon antibunching, however, refers

to a sub-Poissonian distribution with the mean less than the variance and photon num-

ber fluctuations smaller than a coherent light. [112] A flat graph in cross-correlogram

demonstrates that the photons are emitted randomly with a Poisson distribution. [113]

3.3.1.2 Survival model

If the null hypothesis in section 3.3.1.1 is accepted, meaning that the photon counts show

a Poisson distribution, the probability of not observing photons in a given time window tw

is given by the survival function with an exponential distribution (see Appendix. C). Let t

denote a non-negative random variable representing the waiting time until the occurrence

of an event, then the survival function (S(tw)) gives the probability that the event of

interest has not occurred by duration tw and is defined as in Eq. C.5:

S(tw) = P (t ≥ tw) = e−λtw ,

where λ is the number of detected photons per unit time. Suppose we fix tw and that we

want the probability of observing (at least) one photon to be equal to the probability of

observing no photons, the survival function is then defined as:

e−λtw =
1

2
→ λtw = ln(2). (3.4)

In this way, by knowing the detected flux of photon, we can fix the integration time

window to obtain an equal probability of detecting one photon and no photons.

3.3.2 Experimental procedure

Figure 3.6 shows the setup schematic for generating bit sequences using Si-NCs LED

and Si SPAD. The current/voltage source that drives the LED is an Agilent B1500A

Semiconductor Device Parameter Analyzer. The photons emitted from the LED are sent
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to the SPAD through an optical multimode fiber bundle which collects the light from

the LED surface. No optics is used between the bundle and the LED. The SPAD is

a PerkinElmer SPCM-AQRH-16, with the dead time of ∼35 ns, the DCR of ∼300 Hz

and afterpulsing probability (AP) of 0.5%. The pulses from the SPAD are recorded via

a multichannel scaler Ortec Easy-MCS with a minimum channel (bin) width of 100 ns

and with no dead time between the channels. The scan length is variable from 4 to

65,536 channels. The measurements were performed at room temperature and the optical

multimode fiber coupled with Si-NCs were kept inside a dark room.

Figure 3.6: Scheme of the setup used to generate the bit sequences. Emitted photons

from the Si-NCs LED are detected by a Si SPAD. The electrical signals are then sent to a

multichannel scaler (MCS) connected to a PC to generate sequences of random numbers.

© Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced from [107] with permission.

The LED characteristics are fully described in [87] and in Section 3.1. As discussed in

Section 3.1, to assure the injection of carriers into Si-NCs under the direct tunneling

mechanism and to avoid the FN tunneling which causes degradation to the oxide layer

and, hence, inefficiency of the LED and the creation of a thermal LED, the applied forward

current to the LED was kept lower than ∼1.7 µA (corresponding to a voltage of ∼2.9 V).

These Si-NCs LEDs show remarkable stability over weeks of continuous operation. [114]

3.3.3 Results and discussion

As stated before, since the spontaneous emission of photons in an LED is the origin of

randomness, the Si-NCs LED can be used as a quantum source of randomness. First, we

demonstrate that it can be described as a Poisson source of entropy. Having fixed the

driving current to 1.3µA, we measured the occurrence of counts in a time window tw of

1 µs. The histogram plot of the counts with the Poisson fit are presented in Fig. 3.7. The

statistics was done on 65535 counts recorded each two tw (the reason of this procedure was

to remove correlation as we will detail later). Considering the conventional significance

level of α=0.05, we computed a p-value of 0.0663. Since p-value> α, we conclude that

the Poisson distribution matches well with our obtained data.
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Figure 3.7: The histogram containing 65535 samples of data and the Poisson fit with the

mean photon number of 0.69. © Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced

from [107] with permission.

To check further if the detected photons follow a Poisson distribution, we did cross-

correlation measurements. Fig. 3.8 shows the schematic setup comprising Si-NCs LED, a

2x2 optical multimode fiber splitter, two Si SPADs and a cross-correlator. The fiber split-

ter has arms of 0.5 and 15 m, with one of the 0.5 m arms coupled with the Si-NCs LED,

the other 0.5 m arm being blocked and and the 15 m arms coupled with the Si SPADs).

The fiber arms which are coupled with the Si SPADs, are long enough to prevent the pos-

sible correlations between the detected light on one SPAD and the detection of any sorts

of reflected light (due to that detection) on the other one. The Si SPADs are Excelitas

(SPCM-AQRH-14) with the dead time of 22 ns, the DCR of ∼100 Hz and afterpulsing

probability of 0.5%. The cross-correlator is a linear correlator with 103 channels (bins)

and the resolution of 1.3 ns.

The output signals of the Si SPADs are sent to the two channels of the cross-correlator to

perform the cross-correlation measurement. The cross-correlogram of the output pulses

from the Si SPADs, resulted from the detection of the emitted photons from the Si-NCs,

is presented in Fig. 3.9. As can be seen in the figure and has been explained in Sec-

tion 3.3.1.1, the flat cross-correlation graph (with no peak or dip) demonstrates that the

detected photons follow a Poisson distribution. This is another proof, in addition to the

χ2 statistic, that the Poisson distribution is a good match for the distribution of the de-

tected photons (emitted from the Si-NCs LED) on the Si SPAD.

The next step was to make use of the survival function to fix the measurement parameters.

The emitted photons from the Si-NCs LED were detected by the SPAD. The electrical

signals out of the SPAD were then sent to the MCS with a maximum scan length of 65536
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Figure 3.8: The cross-correlation setup consisting of a 50:50 optical multimode fiber

splitter coupled with Si-NCs LED from one of the shorter arms (0.5 m) end and with Si

SPADs from the longer arms (15 m) ends and a linear cross-correlator to perform cross-

correlation measurement of the output signals from the Si SPADs. The other 0.5 m arm

is being blocked to light exposure. The cross-correlator is connected to a PC with the

Labview software to exhibit and save the cross-correlogram.
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Figure 3.9: The cross-correlogram of the output pulses from the Si SPADs. The flat

graph indicates that the detected photons on the Si SPADs (resulted from the detection

of the emitted photons from the Si-NCs) follow a Poisson distribution. The plot is not

normalized and the error bars can be seen for some data points.

channel (bins) to count the input events (detected photons) in the channels of its digital

memory. Fixing the bin width to 1 µs, we find λ ∼ 6.9 × 105 (counts/s) obtained by

applying a current of 1.5-1.7 µA to the Si-NCs LED.

Fixing the applied current to the Si-NCs LED and acquiring data using the setup in

Fig. 3.6, we measured the probability of ones for 262 sequences each of 106 bits (Fig. 3.10).

The overall time duration of the sequences is then 262 × 106 × 1 µs (i.e. number of se-

quences times number of bits times bin width), whereas the actual acquisition time was

28 min due to the time required for the data to be buffered in the MCS and transferred

to the PC.

Then, the acquired bit strings were evaluated for randomness by a set of statistical tests.

A very popular set is the NIST test suite [81]. The raw sequences passed all the statistical

tests in the NIST tests suit except for the Runs test. This failure is usually attributed to

the existence of correlation between consecutive bits since the Runs test implies that the

probability of a change from a one to a zero to be equal to the probability of a change

from a zero to one for a random sequence [81]. This correlation is caused by the detec-

tor’s afterpulsing. As can be seen in Fig. 3.11 (blue squares), only the first time lag is

correlated significantly since the time scale of the bin width is greater than the dead time

of the avalanche photodiode [115].
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Figure 3.10: The evolution of the probability distribution of one with a 99% confidence

interval in a dataset of 262 sequences each of 106 bits. Note that the time scale refers

to the bit acquisition time and not the actual time of the measurement. © Wiley-VCH

Verlag GmbH & Co. KGaA. Reproduced from [107] with permission.

Considering the 262 sequences as the output of a Markov process1 of order one, we built

the transition matrix (T )2 of the process. As mentioned before, the experimental setup

was adjusted to make individual 0 and 1 equally likely to happen, so the transition ma-

trix was symmetric and its stationary distribution is consequently uniform. We could

not measure a difference between the uniform distribution and the transition probability

after only two steps, T 2, which suggests that any correlation present was low enough that

reinforcing a dead time of a single observation window would be appropriate. Hence, one

bit in every two in the dataset was removed that is like a simulation of experimentally

enforcing a dead time of length equal to the bin width tw.

Doing so, we halve the bit rate, outputting a single bit every 2 µs instead of 1 µs. The

statistical analysis, done on these new sequences, shows no correlation between the bits

and a perfect balance between zeros and ones. Figure 3.11 (red circles) represents the

removal of the significant correlation after eliminating each alternate bit in the dataset.

Therefore, the effect of the afterpulsing of the detector is removed.

The remaining 131 sequences of 106 bits pass all the statistical tests in NIST test suite de-

1A Markov process is a stochastic process in which the number of outcomes or states are finite, the

outcome at any stage depends only on the outcome of the previous stage (i.e. as time goes by, the process

loses the memory of the past) and the probabilities are constant over time (time-homogeneous Markov

process). [116]
2The transition matrix of an n-state Markov process is an nxn matrix T where the i, j entry of T

represents the probability of the transition of an object in state j into state i. [116]
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scribed in Section 2.3.7.1 with a maximum measured bias of ∼ 0.0012 (see Section 2.3.6).

The min-entropy is calculated to be ∼ 0.9965 bits per bit of data (Eq. 2.17). As previously

mentioned in Section 2.3.7.1, to evaluate the success of a test, a significance level (α) of

0.01 is assigned for the test since common values of α in cryptography are about 0.01.

If P-valueT ≥ 0.0001, then the sequences can be considered to be uniformly distributed.

The proportion of passes for each test is presented in Fig. 3.12 (b). All the results have

been normalized to 100.

It was shown after more experiments that to remove the correlation between consecu-

tive bits in the dataset, an enforced dead time of 500 ns is sufficient. Doing so, high

quality random sequences are generated without the application of any post-processing

operations. The results of the NIST tests are illustrated in Fig. 3.13 (a) and (b).
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Figure 3.11: Autocorrelation versus time lag for the dataset of 262 sequences each of 106

bits (blue squares) showing high correlation at time lag 1 and the dataset of 131 sequences

each of 106 bits (red circles) showing negligible correlation after eliminating each alternate

bit in the dataset of 262 × 106 bits length. © Wiley-VCH Verlag GmbH & Co. KGaA.

Reproduced from [107] with permission.

3.3.4 Discussion on long datasets

The emission intensity of the Si-NCs LED is remarkably stable over continuous operation.

Still small variations of the ambient conditions influence their behavior. Note that to

acquire the 131 Mbits long sequences that pass the NIST tests, we need to operate the

system continuously for 28 min. This implies that the EL should be stable in that time

interval. If we acquire 1 Gbits long sequences, the actual measurement time is about 214

minutes. Now EL dependence on ambient interference becomes evident (Fig. 3.15). In
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Figure 3.12: (a) Results of the NIST tests

for 131 sequences of 106 bits for a simulated

dead time of 1 µs. All tests are passed at

the 0.01 significance level. (b) The pro-

portion of passes for each test. The min-

imum pass rate for each statistical test is

approximately 96 for a sample size of 100

binary sequences. The results of all tests

have been normalized to 100. © Wiley-

VCH Verlag GmbH & Co. KGaA. Repro-

duced from [107] with permission.
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Figure 3.13: (a) Results of the NIST tests

for 131 sequences of 106 bits for a simulated

dead time of 500 ns. All tests are passed

at the 0.01 significance level. (b) The pro-

portion of passes for each test. The min-

imum pass rate for each statistical test is

approximately 96 for a sample size of 100

binary sequences. The results of all tests

have been normalized to 100. © Wiley-

VCH Verlag GmbH & Co. KGaA. Repro-

duced from [107] with permission.
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fact, considering a long dataset of 1 Gbits failure in the main statistical tests in NIST

tests suite is observed which is due to the loss of equal probability of ones and zeros

(bias) (Table 3.1). As shown in Fig. 3.14, a drift in the probability distribution of ones is

observed. The failure time then precedes tw and the survival function in Eq. 3.4 no longer

applies to our system. The loss of the equal probability is due to a < 0.4% variation in the

EL of the Si-NCs LED. Figure 3.15 (a) reports a day record of the emission intensity of the

Si-NCs LED. Fluctuations of the EL intensity in the few per mille range are observed. At

the same time, we have recorded also the voltage bias, the ambient temperature, and the

ambient humidity (Fig. 3.15 (b), (c), and (d)) to look for correlations. Close observation

of the plots shows that the EL is most significantly correlated with the alterations of the

ambient temperature. A slight decrease (increase) in ambient temperature results in a

decrease (increase) in EL. It can be seen that after about six hours of measurement, a

small decrease of 0.5◦C in temperature causes a decrease of about 0.2% in the EL of the

LED. As the bias factor increases exponentially with λ (Eq. C.5 and 3.4), the randomness

is extremely sensitive to the EL intensity and any small variation of the EL intensity will

exponentially increase the bias factor. Therefore, the QNRG is possible only when the

driving current is precisely set at each condition.

In the literature, to remove the bias on the data either a precise control on the QNRG

parameters [54] or post-processing algorithms [117] or simple encoding methods [118]

have been proposed. Although the boundary between post-processing algorithms and

encoding methods is not clearly defined, the amount of resources needed can be adopted

to differentiate. Here we first used the Von Neumann randomness extractor [118] and then

more efficiently the information-theoretically provable Toeplitz extractor [119] to extract

the randomness in the raw dataset of 1 G bits length.

3.3.4.1 Von Neumann randomness extractor

Some parameter control solutions can also be taken into account for long datasets to

overcome the problem of the drift in the probability of ones (zeros) such as stabilizing

the Si-NCs LED temperature, resetting the applied current to the Si-NCs LED (or equiv-

alently resetting the bin width in the MCS) and designing a feedback for the system.

Stabilizing the temperature, for instance, will cause the EL intensity to remain constant

and therefore the equal probability of ones and zeros will be maintained. In the same

manner, if the applied current to the LED or the bin width in MCS is reset to keep the

EL intensity invariant, the drift in the probability of ones (zeros) will be eliminated and

eventually the system would produce long datasets of high quality random numbers.

However, these methods are more resource hungry than the simple and more economic

Von Neumann randomness extractor. This extractor takes successive pairs of consecu-

tive bits (non-overlapping) from the input stream. If the two bits match, no output is
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Figure 3.14: The evolution of the probability distribution of one with a 99% confidence

interval in a dataset of 1000 sequences each of 106 bits. Note that the time scale refers

to the bit acquisition time and not the actual time of the measurement. © Wiley-VCH

Verlag GmbH & Co. KGaA. Reproduced from [107] with permission.

generated. If the bits differ, the value of the first bit is output. [120] The Von Neumann

extractor makes the binary data unbiased but quarters the bit rate. [118]

We apply the Von Neumann extractor to remove the bias in the raw dataset A with

1 G bits length. The results of the NIST tests for the obtained dataset B are presented

in Table 3.1. Since there is a failure in the Runs test, eliminating each alternate bit in

dataset B would remove the correlation between consecutive bits resulting in dataset C.

Therefore, as can be seen in Fig. 3.16, the correlation is appreciably suppressed and all

the NIST tests are passed for dataset C with the reduced bit rate to 125 kbps.

Table 3.1: Results of the four statistical NIST tests for datasets A, B, and C with 1000,

250, and 125 sequences of 106 bits, respectively. The P-valueT has to be larger than

0.0001. The minimum pass rates for each statistical test is approximately 980, 242, and

120 for a sample size of 1000, 250, and 125 binary sequences, respectively.

Statistical test Dataset A Dataset B Dataset C

P-valueT Proportion Result P-valueT Proportion Result P-valueT Proportion Result

Frequency 0.000000 952/1000 Failed 0.363593 246/250 Passed 0.080108 124/125 Passed

Block frequency 0.000000 968/1000 Failed 0.009136 250/250 Passed 0.826984 125/125 Passed

Cumulative Sums 0.000000 955/1000 Failed 0.779188 246/250 Passed 0.936639 124/125 Passed

Runs 0.000000 431/1000 Failed 0.000000 236/250 Failed 0.158872 125/125 Passed
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Figure 3.15: Plots showing (a) EL, (b) ambient temperature, (c) ambient humidity, and

(d) Si-NCs LED voltage with their variations versus time. The acquisition time scales for

small (28 min) and long (214 min) datasets can be seen on top of the plot. © Wiley-VCH

Verlag GmbH & Co. KGaA. Reproduced from [107] with permission.
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Figure 3.16: Autocorrelation versus time lag for the datasets A (blue squares), B (green

diamonds), and C (red circles) with 1000, 250, and 125 sequences of 106 bits, respectively.

Dataset B is obtained by the application of Von Neumann randomness extractor to the

raw dataset A. The elimination of each alternate bit in dataset B results in dataset C.

3.3.4.2 Toeplitz-hashing randomness extractor

It is more efficient to use information-theoretically secure randomness extractors like the

Toeplitz-hashing function instead of simple randomness extractors like the Von Neumann

extractor. [66] We implemented the Toeplitz-hashing extractor to our QRNG as follows.

As mentioned before in Section 3.3.3, the min-entropy of the raw data is calculated to

be ∼ 0.99 bits per bit. With the input bit-string length of 1000 bits, the output bit-

string length is 1000× 0.99 ≥ 990. Therefore, we conservatively built the Toeplitz matrix

of 1000 × 940 using some high quality random numbers as the elements of this matrix.

Through matrix multiplication of the raw data, put in vectors of 1×1000, by the Toeplitz

matrix of 1000× 940, we obtained 940 Toeplitz-hashed bits out of each 1000 bits of raw

data. As can be seen in Fig. 3.17, the correlation is appreciably suppressed and all the

NIST tests are passed for the Toeplitz-hashed dataset (Table 3.2).

3.4 Conclusions

We realized a physical quantum random number generator exploiting Si-NCs LED as the

source of randomness. Very negligible bias and simple setup are the chief strengths of our

QRNG. With forced dead time of 1 µs and 500 ns, 100 M bits long sequences pass the

statistical tests of the NIST suite. The highest bit rate achieved for short datasets, with
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Table 3.2: Results of the statistical NIST tests for the datasets of 1000 and 940 strings of

106 bits of raw and Toeplitz-extracted data, respectively. The P-valueT has to be larger

than 0.0001. The minimum pass rates for statistical tests is 0.980. © Wiley-VCH Verlag

GmbH & Co. KGaA. Reproduced from [107] with permission.

Raw data Toeplitz-extracted data

Statistical test P-valueT Proportion Result P-valueT Proportion Result

Frequency 0.000000 0.952 Failed 0.114955 0.987 Passed

Block frequency 0.000000 0.968 Failed 0.588505 0.992 Passed

Cumulative Sums 0.000000 0.955 Failed 0.229355 0.989 Passed

Runs 0.000000 0.431 Failed 0.065561 0.988 Passed

Longest run 0.607993 0.992 Passed 0.547061 0.984 Passed

Rank 0.916599 0.989 Passed 0.164541 0.987 Passed

FFT 0.130369 0.985 Passed 0.601722 0.990 Passed

Non-overlapping template 0.009071 0.985 Passed 0.855973 0.984 Passed

Overlapping template 0.000000 0.963 Failed 0.676924 0.989 Passed

Universal 0.975012 0.990 Passed 0.267060 0.990 Passed

Approximate entropy 0.000000 0.986 Failed 0.100084 0.994 Passed

Random excursions 0.131334 0.980 Passed 0.380164 0.984 Passed

Random excursions variant 0.034368 0.986 Passed 0.182977 0.989 Passed

Serial 0.735908 0.984 Passed 0.733513 0.989 Passed

Linear complexity 0.530120 0.993 Passed 0.264222 0.990 Passed
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Figure 3.17: Autocorrelation versus time lag for 1 Gbits and 940 Mbits of raw data and

Toeplitz-extracted data, respectively. The correlation at the first lag is minimized after

the application of the Toeplitz extractor. © Wiley-VCH Verlag GmbH & Co. KGaA.

Reproduced from [107] with permission.
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a forced dead time of 500 ns, is 0.6 Mbps.

Besides the bit rate, our approach benefits from several advantages: it uses light to

stimulate events in the SPAD and avoids a deterministic post-processing of the raw data

for small datasets. This fact is extremely remarkable in producing high quality random

numbers and compensates for the low bit rate. Furthermore, the approach proposed here

uses simple silicon-based LEDs as the light source and its overall bit rate can be easily

increased by adopting a parallel architecture and exploiting the CMOS compatibility of

all the components.

However, 1 G bits long datasets fail the main statistical tests in the NIST tests suite.

This failure is attributed to a per mille drift in the EL of the Si-NCs LED that violates

the equal probability of ones and zeros. The randomness is extracted by the application

of the Von Neumann and information-theoretically secure Toeplitz extractors. The bias

and correlation among bits are removed and all the statistical tests in the NIST tests suite

are consequently passed. A number of parameter control solutions such as stabilizing the

temperature, resetting the applied current to the Si-NCs LED (or equivalently resetting

the bin width in the MCS) and considering a feedback for the system can also be taken

into account to overcome the problem of bias and to generate long, high quality random

bit streams.
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Robust QRNG based on Si-NCs

LED

A class of optical QRNGs based on the timing measurement of the photon arrivals has

been proposed in literature. [59, 63, 57, 121, 102] Random bits have been extracted by

comparison of the time difference between subsequent random events [59], comparison of

the photon numbers in consecutive laser pulses distributed in time [57], random arrival

times of photons on a single and an array of photodiodes [63, 102], and encoding the

independent and uniformly distributed random phase time. [121] In [102], despite the high

bit rate, the mean of the photon flux is larger than one which makes the security of this

method arguable for applications in quantum cryptography where the quality of random

numbers is of higher importance than the speed. In [63], the exponential distribution

of the arrival times of photons introduces bias in the raw data which is removed by

post-processing operations. The bit extraction method in [59] makes the efficiency to

be around 0.5 bits per detection since using the restartable clock method to eliminate

both bias and correlation reduces the efficiency to less than 1 bit per arrival. In a recent

method [121], with the maximum generation rate of 128 Mbps, the quality of random

numbers is affected by a bias introduced at too high counting rates. In addition, the

setup used in this approach is complex.

To improve the state of the art in terms of simplicity, robustness and random numbers

quality, we developed a methodology based on the photon arrival time measurements with

thorough consideration of the Si SPAD imperfections such as afterpulsing, dead time and

jitter (described in Section 3.2). This approach is simple and easy to model, all-silicon

based, robust and able to generate high quality random numbers. We focus on a random

number generation technique in which the source of entropy is quantum mechanical. It is a

Si-NCs LED (see full description in Section 3.1) coupled with a Si SPAD. A dedicated field-

programmable gate array (FPGA) performs the random bit extraction. This approach

avoids the use of post-processing algorithms used elsewhere. [64, 63] The proposed QRNG
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is robust against variations of the internal and external parameters such as the aging of the

components and changing temperature. The components of the QRNG can be integrated

on the silicon platform via CMOS technology allowing the fabrication of a compact device.

4.1 Methodology

4.1.1 Theory

As explained and proved in (Appendix B), the Poisson process has the property that if

there is only one single arrival in a time interval [0 , t], the distribution of the arrival times

is uniform throughout the interval. This fact has been considered in several works [64,

121]. However, a robust methodology which takes into account this fact in addition to

thorough consideration of the non-idealities of the detector (Si SPAD in our case), did

not exist in the literature. Therefore, to develop a methodology1 based on the studies of

the statistics of the detected photons (emitted by the Si-NCs LED) by the Si SPAD (see

Section 3.3.3), we consider intervals with a fixed duration having “only” one single arrival;

intervals with no arrival or with more than one arrival are discarded. In this way, we cope

with the emission variations of the Si-NCs LED at the expense of a reduced random bit

generation rate.

4.1.2 Target function

The interval and subinterval structure for an ideal detector is explained in Fig. 4.1 (a).

Every interval is composed of 16 subintervals of equal length, each associated with a

symbol that generates the random number if a single photon is detected (i.e. a photon

arrival occurs) in that specific time interval.

The real Si SPADs exhibit a number of non-idealities. The most important ones are

afterpulsing, dead time, jitter, dark counts, light emission during avalanche and efficiency

lower than 100%; all dependent on temperature, ageing, bias voltage, etc. Afterpulses

are strongly correlated to true pulses and can severely deteriorate the Poisson statistics

of the source.

Through autocorrelation analysis of the detector signal, the afterpulsing distribution can

be measured. [123] The normalized correlation function of the multitau digital correlator

(the correlator used to perform autocorrelation measurement of the output signal of the

Si SPAD in the experimental setup shown in Section 4.3) is computed as [124]:

g2
ij(tc) =

Npairs(tc)

Si Sj (tmax − tc) ∆tc
, (4.1)

1This methodology was proposed by Giorgio Fontana (http://www.ing.unitn.it/~fontana/) and

improved through our discussions.
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Figure 4.1: Schematic of (a) a conventional interval with 16 symbols of {0 1 2 ... 9 A B ...

F}, (b) the “double length” interval with the first half of no number symbol (N) and the

second half with N subintervals between symbols, and (c) the super interval containing 16

“double length” intervals as in (b) with a consecutive one-rotation of symbols. © 2017,

IEEE. Reprinted, with permission, from [122].

where Npairs(tc) is the number of photon pairs accumulated for the time bin tc, Si and Sj

are the average signals in channels i and j, respectively, tmax is the total experiment time,

and ∆tc is the bin width for tc. In the case of autocorrelation, only one channel is used

and hence in Eq. 4.1, i and j are considered equal.

Dead time can also be measured with autocorrelation analysis of the detector signal. [125]

The detector jitter is a random variable that adds to the arrival times of the photons.

Therefore, it changes the statistics of the measured arrival times (see Section 3.2).

Compared to the operational photon flux, dark counts are extremely rare events in our

detector (∼ 300 counts/s) and they do not alter the overall behavior of the apparatus.

Detector efficiency is about 50% and simply adds to the losses of the whole optical chain.

The low efficiency of the detector highlights the fact that a large proportion of the arrivals

are inherently discarded by the losses. The surviving detections, however, keep their Pois-

son distribution.

In order to mitigate these detector non-idealities, we modified the simple scheme of

Fig. 4.1 (a). If we proceed with the conventional interval scheme in Fig. 4.1 (a), we

face some problems with:

1. the afterpulsing which occurs within a single interval that causes multiple detections

within the same interval,

2. the afterpulsing which occurs across intervals (i.e. a photon is detected in an interval

while the afterpulse is generated in the following time interval),

3. in-interval dead time, and

4. across-interval dead time.

71



Chapter 4. Robust QRNG based on Si-NCs LED

As we discard all intervals with more than one detected photon (Section ??), the first

problem has no effect.The second problem can be defeated by counting the number of

photon arrivals in the previous interval. If there is one or more than one detection in the

previous interval, the present interval is discarded. Therefore, it may never happen that

the afterpulse generated by a legitimate detection in an interval is counted as a legitimate

detection in the following one. This mitigation strategy removes the effects of afterpulsing

but reduces at the same time the efficiency of the generator.

The discard of an interval provided a photon detection in the previous interval, alleviates

also across-interval dead time. In fact, if a legitimate photon is detected at the end of

an interval and this arrival generates a random number, the detector dead time makes it

impossible to detect a photon in the first subintervals of the following interval, introduc-

ing correlation in the random number generation. With the above-mentioned rule, this

situation is impossible.

In-interval dead time is masked if the dead time of the detector is shorter than the subin-

terval duration, so multiple photon detections would generate the same random number.

Ideally, our method would discard that number due to more photon detections in an inter-

val, but dead time makes it valid. This is equivalent to the effect of an optical attenuator,

which does not alter the uniform distribution of arrival times. The case of in-interval

dead time spanning across two subintervals is different; it changes the uniform distribu-

tion of arrival times. To overcome this problem, we introduce a no-number generating

subinterval (nngs) between random number generating subintervals (rngs), as presented

in Fig. 4.1 (b). Doing so, in-interval dead time can mask photons that if detected would

generate no number or would cause the number to be discarded, so again mimicking an

optical attenuation.

One factor that might affect the results is the inability of the SPAD to resolve multiple

photons arriving within the SPAD resolution window. Let us note that the result in Eq. ??

generalizes to any number of arrivals, i.e. if there are multiple arrivals in a time interval,

each arrival time is a random variable with uniform distribution. [126] Therefore, if many

photons hit the detector in the same resolution window, one of them should be selected

at random before detection in order to be a valid photon according to our methodology.

If multiple photons arrive at the same subinterval, one should be selected at random as

mentioned before. However, multiple photons (not resolved by the detector) will generate

the same random symbol as the single photon selected at random. In any case, a low flux

of photons, obtained by an attenuator or a low efficiency source, makes this occurrence

a low probability event. Thus, the inability to observe the multiple arrivals within the

resolution window of the detector or inside the subinterval will not affect the generation

method.

As mentioned before, the SPAD measures photon quantity N > 0 and not only N = 1.

The two conditional probabilities of P (T ≤ τ |N(t) > 0) and P (T ≤ τ |N(t) = 1) are
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merely different for large λ. [126] The observable departure from the uniform distribution

in Fig. 4.2 is possibly due to this phenomenon together with the non-uniform duration of

the subintervals originated from the electronics as discussed below.

Through initial measurements, we observed a very small departure of ∼ 0.01% in the

probability of generated symbols from the ideal value of Pideal(symbol) = 1/16 (Fig. 4.2)

as the result of non-uniformity in the length of subintervals and/or the lack of photon

number resolution in SPAD. The non-uniformity is most probably due to periodic fluc-

tuations of rail voltages in the FPGA (the jitter). [127] We do propose in the following a

mitigation technique which solves these issues.

Our methodology is developed by defining “double length” periodic time intervals with

an associated fully deterministic “target function”. In the case of 16 rngs, the alphabet of

the symbols is {N, 0, 1, ... F}, that reads N (no-number), and the hexadecimal numbers

0 to F. Each interval has 32 N subintervals in the first half to mask the afterpulsing dis-

tribution of the Si SPAD (Section 4.3) and an alternation of N subintervals and the full

set of numeric symbols in the second half, with a total of 64 subintervals (Fig. 4.1 (b).

Only if one single detection hits the target function associated with an interval, a random

symbol is generated. In addition, since the order of the symbols in the target function is

not relevant, a “super-interval” has been defined that is composed of 16 “double length”

intervals, in which the random number generating symbols are ordered as {0, 1, ... F} in

the first interval, {F, 0, ... E} in the second one and so on.

The consecutive one-rotation of symbols (Fig. 4.1 (c)) does indeed uniformly redistribute

the inherent jitter of the physical counter to all symbols (Fig. ??).The super-interval

structure is deterministic. Because not all Intervals within a super-interval generate a

random number, it is not possible to invert the function from the generated random sym-

bol stream. In fact the information of the number of skipped intervals is not included in

the output stream.

4.2 Robustness

Robustness plays a key role in a QRNG designed for cryptographic applications. The

method employed to extract random numbers has to be robust against internal defects

and external attacks. An external attack might change the dead time of the detector or

the afterpulsing distribution, or it might find loopholes in the post-processing algorithms

often used by most methods.

By masking the non-idealities of the detector described in the previous section, the internal

robustness against the operational system defects is achieved. If the nominal characteris-

tics of the light source and the Si SPAD are maintained within tolerances included in the

design of the target function, the generation of high quality random numbers is guaranteed
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Figure 4.2: Probability distribution of the 16 bin symbols built by analyzing 1 G symbols

raw data. The empty squares refer to the experimental values acquired using the target

function in Fig. 4.1 (b) and the solid red line to the theoretical value of 1/16=0.0625. The

error bars are visible for some data points. The distribution is observed to be nonuni-

form. © 2017, IEEE. Reprinted, with permission, from [122].

without any consistency check of the generation hardware. The external attacks could

change the intensity of light by for instance a change in the temperature, but this effect

will not change the quality of the random numbers; it might only change the efficiency of

the generator (see Section 4.4).

4.3 Experimental procedure

The experimental setup is presented in Fig. ??. Photons emitted from a Si-NCs LED are

detected by a single photon counting module, PerkinElmer SPCM-AQRH-16, through a

multimode fiber bundle. The LED is driven by an Agilent B1500A Semiconductor Device

Parameter Analyzer. The EL of the LED is monitored by a Hewlett Packard 53131A

Universal Counter. The TTL output of the detector is directly connected to the high

speed digital input of the FPGA.

The measurement of the arrival times is performed by a fully synchronous logic. The

FPGA continuously samples the detector at the frequency of 100 MHz, which is crystal

controlled. A valid arrival is produced by a high analog logic level heralded by one clock

cycle (10 ns) of low analog logic level. A Digilent ATLYS FPGA board has been used

with the programming language VHDL. The temperature is monitored and controlled by

an LCI Light Control 350 Temperature Controller Module. All the measurements are

conducted in dark condition inside a probe station.
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Figure 4.3: Schematic of the setup for random numbers generation comprising a Si-NCs

LED, a Si SPAD and an FPGA to generate random numbers. The random hexadecimal

symbols produced at the FPGA are then converted into binary “0” and “1” with the

efficiency of 4 bits out of each symbol. The electroluminescence (EL) is monitored by a

photon counter connected to a PC. © 2017, IEEE. Reprinted, with permission, from [122].

Autocorrelation, g2(τ), measurement of the Si SPAD signal was performed via a multitau

digital correlator with 4 ns resolution.[124] The afterpulsing distribution exhibits a main

peak within 80 ns from the main autocorrelation peak at τ=0 (Fig. 4.4). Additional peaks

are possibly related to reflections of the light generated by the SPAD itself when a photon

is detected. This light pulse travels forth and back in the fiber and may induce a time

shifted correlated detection. The plateau in g2(τ) approaches the normalization value of

1 at about 160 ns.

We conservatively determined that after 320 ns afterpulsing and fiber reflections will

not contribute to the statistics of the generated random numbers. Therefore, we adopt

fixed contiguous “double length” time intervals of 640 ns, embedded in the super-interval

structure. A single arrival in the second half of the interval (Fig. ?? (b)) produces 4 bits

when arrival occurs in one of the 16 possible active subintervals.

Starting with a Poisson process with intensity λ we need to assess the effect of considering

only single arrivals in a time interval with minimum t0 distance between the last rngs in

interval M and the first rngs in interval M+1. The distribution of the times between one

arrival and the following one for a Poisson process is given in Eq. B.3 as:

f(t) = λ e−λt.

The integral over all times, t, from 0 to ∞ gives 1. It means that the probability of

having any possible elapsed time between one arrival and the following one is unity. If

we exclude all arrivals that have inter-arrival time lower than t0 and integrate between
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Figure 4.4: Autocorrelation function (g2(τ)) of the Si SPAD signal (peak at zero is out of

scale). Dead time and afterpulsing distribution of the detector can be seen here. © 2017,

IEEE. Reprinted, with permission, from [122].

t0 and infinity, we obtain e−λt0 . We can therefore define the average number of arrivals

that have inter-arrival time greater than t0 by multiplying the above probability by the

average arrivals per unit time for the Poisson process:

λt0 = λe−λt0 (4.2)

It maximizes at λ = 1/t0 with the value of λ/e. If λ is 1.56 Mcounts/s (corresponding

to 1/640 ns), according to the theory (Eq. 4.2) with t0=320 ns the bit rate would be

3.7 Mbps. However, the experimental bit rate reaches 1.68 Mbps. This discrepancy

depends on the losses due to N subintervals and on the detector dead time. Figure 4.5

shows the experimental bit rate at different counting rates. It reaches a maximum of

about 1.68 Mbps at the counting rate of 1.88 Mcounts/s. At higher counting rates, the

bit rate decreases due to higher discards of multiple arrivals in the time intervals.

4.4 Results and discussion

Using the setup shown in Fig. ??, long datasets were generated at different counting

rates—equivalent to different applied currents to the Si-NCs LED—and different temper-

atures. The minimum counting rate is defined as the minimum count rate required to

have the buffer of the FPGA fully written. The results and discussion are presented here.

4.4.1 Quality of random numbers

It can be seen in Fig. 4.6 that the raw data, generated by the FPGA according to the pro-

cedure described, follow a nearly uniform distribution which fits the expectation. Indeed,
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Figure 4.5: The experimental bit rate at different counting rates. It reaches a maximum

of about 1.68 Mbps at the counting rate of 1.88 Mcounts/s. At higher counting rates, the

bit rate decreases due to higher discards of multiple arrivals in the time intervals. © 2017,

IEEE. Reprinted, with permission, from [122].

in the ideal case, the theoretical value for the probability distribution of 16 bin symbols

is 1/16 (indicated by a red solid line in Fig. 4.6).

The generated raw data show high quality of randomness. JPMF (Section 2.3.3) is

used to look for a potential weakness of this method. The analysis of JPMF shows

a very low deviation in the order of ∼ 10−6 from the expected theoretical value of

(1/16)× (1/16) = 0.00390625 (Fig. 4.7). The MI (Section 2.3.4) of the generated random

symbols calculated by Eq. 2.11 is ∼ 10−7 bits considering 1G random symbols.

To test the robustness of our method, we arbitrarily changed the LED driving current or

the LED temperature to change the emitted flux of photons. The min-entropy (described

in Section 2.3.5) of the raw data taken at different counting rates and temperatures is

represented in Fig.4.8 (a) and (b), respectively. We observe that although it is slightly

affected by the change in the counting rate of the photon flux and by the temperature

variation, the values of the min-entropy are in the range of 3.99907-3.99972 bits per hex-

adecimal digit (a nibble or 4-bits). This shows the high efficiency of our methodology

with respect to entropy. The maximum bias (explained in Section 2.3.6) is calculated to

be in the order of ∼ 10−5.

As mentioned before the legitimate detection of a photon in each subinterval produces 4

bits. Replacing each symbol with its corresponding 4-bit binary values, long sequences of

zeros and ones are obtained.

The probability of having ones (zeros) is unaffected by the change of the photon flux or
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Figure 4.6: Probability distribution of the 16 bin symbols built by analyzing 1 G symbols

raw data. The filled squares refer to the experimental values acquired using the target

function in Fig. 4.1 (c) and the solid red line to the theoretical value of 1/16=0.0625.

The error bars are placed inside the squares. © 2017, IEEE. Reprinted, with permission,

from [122].
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Figure 4.8: Min-entropy of raw data sequences each containing 500 Msymbols taken at

(a) different counting rates and (b) different temperatures. © 2017, IEEE. Reprinted,

with permission, from [122].

of the temperature (Fig. 4.9).

4.4.2 Statistical tests

4.4.2.1 NIST tests

We apply the 15 statistical tests in NIST tests suite described in Section 2.3.7.1 to the

generated raw data. Various datasets with 1 to 10 Gbits length at different applied

currents to the LED—from the minimum counting rate to the maximum—and at different

temperatures (24◦C - 36◦C) were obtained. They all passed the NIST tests without the

application of a post processing algorithm irrespective of the EL variations of the LED

during data acquisition. The results for a dataset of 10 Gbits at the EL intensity of

1.5 Mcounts/s are reported in Table 4.1.

4.4.2.2 Alphabit battery

As previously described in Section 2.3.7.1, the Alphabit battery consists of 17 statistical

tests designed primarily for hardware random bits generators. It is much faster than the

NIST tests suite; it takes about 1 minute for 230 bits of data. [83]

We considered 200 datasets each of 1 Gbits length. The calculated P-values of the tests

are presented in Fig. 4.10. In order to pass a test, the P-value has to be in the range of

[0.001 , 0.9990]. If the deviation of P-value (∆P−value=min{1−P-value, P-value}) is in

the range of [10−6 , 10−2], the test is considered inconclusive or weak and in the range of
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from [122].

Table 4.1: NIST tests results for 10G random bits (1010 bits). The significance level is

α=0.01. In order to pass, the p-valueT should be larger than 0.0001 and the minimum

proportion should be 0.987. © 2017, IEEE. Reprinted, with permission, from [122].

Statistical test P-valueT Proportion Result

Frequency 0.662506 0.9892 Passed

Block frequency 0.072289 0.9916 Passed

Cumulative sum 0.677444 0.9894 Passed

Runs 0.738917 0.9894 Passed

Longest run 0.067300 0.9910 Passed

Rank 0.322594 0.9910 Passed

FFT 0.291282 0.9870 Passed

Non overlapping template 0.581082 0.9909 Passed

Overlapping template 0.268110 0.9891 Passed

Universal 0.334077 0.9878 Passed

Approximate entropy 0.076564 0.9893 Passed

Random excursions 0.155778 0.9926 Passed

Random excursions variant 0.516352 0.9880 Passed

Serial 0.020945 0.9897 Passed

Linear complexity 0.025108 0.9902 Passed
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[10−15 , 10−6] it fails. [128]

The deviation of P-value for 4 tests (each one in a dataset) was ∼ 10−4 and hence they

were considered weak. However, they are passed for all the other datasets. Statistically

speaking, if we get the weak result for only one dataset out of 200, we can safely say

that the test is passed consistently and the QRNG is considered ideal. All the tests were

passed for all the other datasets.
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Figure 4.10: The P-value of the 17 statistical tests in TestU01 Alphabit battery for 200

datasets each of 1 Gbits length. © 2017, IEEE. Reprinted, with permission, from [122].

4.5 Conclusions

We developed a robust methodology to generate quantum random numbers. The source

of entropy is a Si-NCs LED coupled with a Si SPAD connected to an FPGA to extract

random numbers. So far in the literature, timing information of the photon arrivals has

been utilized to generate random bits through different approaches. However, the lack of

a robust methodology with a complete study of the detector imperfections and a simple

setup to generate random numbers has been evident. The methodology developed, tested

and presented here masks all the defects of afterpulsing, dead time and jitter of the Si

SPAD and is effectively insensitive to ageing of the LED and its emission drifts related

to temperature variations. A simple, integrable setup is used to produce sequences of

random numbers.

Analyses of JPMF, MI and min-entropy show the high quality of generated random num-
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bers and the high efficiency of the methodology. Despite the variations of the LED

emission intensity, the system is efficient in producing long bit sequences maintaining the

high quality of random numbers.

The raw data pass all the statistical tests in NIST tests suite and TestU01 Alphabit bat-

tery without a post processing algorithm. The maximum demonstrated bit rate is 1.68

Mbps with the efficiency of 4-bits per detected photon.

The bit rate can be increased by reducing the subintervals duration, optimizing the num-

ber of symbols per interval and decreasing the duration of the Ns between the random

number generating subintervals, according to improved photodetector parameters. All

these factors enhance the bit rate at the expenses of a more complex and expensive sys-

tem. Alternatively, parallelization can be employed to improve the generation rate; high

bit rate can be achieved by multiple Si-NCs LED/Si SPAD in a single chip. High den-

sity integration will benefit from the single detector structure and the use of very simple

analog electronics not requiring silicon area for adjustment circuitries.
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Chapter 5

A compact configuration with

Si-NCs large LED and Si

photomultiplier

In almost all photonic/optical QRNG a bulky setup is used to generate random numbers.

A small-sized QRNG, easy to be implemented in small electronic devices such as mobile

phones and cameras for secure data encryption and decryption as well as other applica-

tions, is highly essential for facile accessibility to everyone. In this chapter, we present a

QRNG with a novel, compact configuration comprising a Si nanocrystals large area LED

(Si-NCs LLED) coupled with a Si photomultiplier (SiPM) in free space to generate high

quality random numbers. First, we describe Si-NCs LLED and its electrical and optical

properties. We will then explain the SiPM. The experimental setup to generate random

numbers will be presented. At the end of the chapter, we will demonstrate the results

and discussion with a comparison between the compact configuration with Si-NCs LLED

and SiPM in this chapter and the bulky configuration in chapter 4.

5.1 Si-NCs large area LED

In order to get closer to the final goal of Work Package 4 of project SiQuro that aims to

make a compact all-Si based QRNG, we made up a setup comprising a Si-NCs large area

LED (LLED) and a Si photomultiplier (SiPM) (Fig. 5.1). Si-NCs LLEDs were fabricated

in Bruno Kessler Foundation (FBK) in order to illuminate arrays of SPADs (which will

be described in the next chapter) and large area detectors (like the 1 mm×1 mm SiPM

we use here). The large area of the Si-NCs LLED allows the coupling with and uniform

illumination of large area, more efficient CMOS detectors. The Si-NCs LLED has a

multilayer structure with 5 periods of SRO/SiO2 layers of 3.5-4 nm and 2 nm, respectively.

The fabrication process of the Si-NCs LLED is the same as that described in section 3.1.

83



Chapter 5. A compact configuration with Si-NCs LLED and SiPM

Figure 5.1: The compact configuration of Si-NCs LLED and SiPM.

The Si-NCs LLED we used here have been prepared in three different sizes (big (b),

medium (m) and small (s) with gate surface area of 1.3 mmx0.99 mm, 0.99 mmx0.82 mm

and 1.02 mmx0.11 mm, respectively) shown in Fig 5.2 (a). Four sets of Si-NCs LLED

as in Fig. 5.2 (a) were bonded on a printed circuit board (PCB) (Fig. 5.2 (b)) for the

measurements of the compact configuration.

The EL spectra of these LLEDs (b, m and s) can be seen in Fig. 5.3 with a high peak

at ∼ 850 nm attributed to the emission from Si-NCs. The measurements for random

number generation in this chapter were performed on the m Si-NCs LLED. As can be

seen in Table 5.1, the m Si-NCs LLED show higher responsivity (computed as EL over

the applied current density (EL/J)) than the b and s LLED.

The applied current densities to the LLEDs in Table 5.1 correspond to the voltages of

2.52 V, 2.34 V and 3 V to the b, m and s LLEDs, respectively. The electrical power density

is calculated to be 5.87, 0.93 and 0.08 mW/cm2 for the b, m and s LLEDs, respectively.

It should be noted that the applied currents to the b, m and s LLEDs are 30, 3 and

3 µA, respectively. At lower currents than 30µA to the b LLED, no appreciable EL is

observed. Therefore, by applying the previously-mentioned currents to the LLEDs, we

tried to keep the voltages and hence the electric field through the active area of the LLEDs

(with actual thickness of ∼22.5 nm) more or less the same. The low current density and

high responsivity of the m LLED yield the higher efficiency of this LLED compared with

the b and s LLEDs. In addition to the efficiency, the active area of m Si-NCs LLED allows

the suitable coupling with the large area SiPM with the dimension of 1 mm×1 mm.

The current-voltage (I/V) characteristics of Si-NCs LLED are presented in Fig. 5.4. They

show a quite rectifying behavior with more current density at forward regime–i.e. negative

voltage applied to the cathode and zero voltage to the anode–than the reverse regime–i.e.

positive voltage applied to the cathode and zero voltage to the anode. It is observed that

at a fixed forward voltage, the current density through the b LLED is larger than m and s
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(a)

(b)

Figure 5.2: (a) The geometry of Si-NCs LLED with different sizes b (big), m (medium)

and s (small) and (b) 4 sets of Si-NCs LLED as in (a) bonded on a printed circuit board

(PCB).

Table 5.1: The responsivity (EL over current density) of b, m and s Si-NCs LLED.

LLED Current Density (mA/cm2) EL (kc/s) Responsivity (G.cm2/s.A)

b 2.33 ∼533 ∼0.23

m 0.37 ∼363 ∼0.98

s 2.67 ∼364 ∼0.14
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Figure 5.3: The EL spectra of the three different sizes of Si-NCs LLED illustrated in

Fig. 5.2 (a) at the applied voltage of -3 V to the cathode of the LLEDs. A high peak at

∼850 nm can be seen that is attributed to the emission from Si-NCs.

LLEDs (particularly at 0.5-3 V) that is due to larger free carrier density flowing through

the active area in b than m and s LLEDs. In the reverse bias region (1-6 V), however, the

b, m and s LLEDs show the same order of magnitude current densities that is related to

the inefficient carrier injection to the active area by the accumulation of the charges near

the boundaries of cathode and anode with the active area. This effect blocks the carriers

from flowing through, recombining and contributing to the net current and consequently

makes the current density independent of the gate areas of the LLEDs. [129]

5.2 Si photomultiplier

Si photomultiplier (SiPM)–more precisely analog Si photomultiplier–is an array of many

(hundreds) SPADs. They are all connected in parallel to common anode and cathode, but

each one with its own quenching resistor. Each cell (i.e. SPAD+resistor) is sensitive to a

single photon and provides a defined current at the output. Therefore, the SiPM output

is proportional to the number of triggered cells, thus to the number of detected photons.

SiPM has obtained a growing attention as an alternative to the traditional photomultiplier

tube in the detection of low photon fluxes, thanks to a number of advantages typical

of solid state detectors, such as compactness, ruggedness, ease of use, low operational

voltage and insensitivity to magnetic fields. [130] SiPM can be used for fast detection of

scintillation light, e.g., in nuclear medicine and high energy physics. It allows important

advancements in positron emission tomography (PET). [131, 132] Further, the good time
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Figure 5.4: The I/V characteristics of the Si-NCs LLEDs. A quite rectifying behavior

is observed in the I/V curves with more current density at forward regime–i.e. negative

voltage applied to the n-type contact electrode and zero voltage to the p-type contact

electrode–than reverse regime–i.e. positive voltage applied to the n-type contact electrode

and zero voltage to the p-type contact electrode.

resolution permits time-of-flight PET, which improves image quality. [133] SiPM is also

emerging as a very sensitive detector in many single-photon or few-photon applications

in physics, biology or other fields [134], and like in the case of the work in this chapter.

Different technologies for SiPM have been developed in Bruno Kessler Foundation (FBK)

during the last few years, with peak sensitivity in the green part (RGB-SiPM) or in the

blue part (NUV-SiPM) of the visible spectrum, and with different cell sizes. The NUV

technology, in particular, benefits from an upgraded silicon material [135], employing an

epi/substrate structure with a lower-lifetime substrate. This gives particular benefits in

terms of correlated noise reduction, i.e. AP and delayed crosstalk (DeCT) probability.

In this work, we employ a 1 mm×1 mm NUV SiPM (inset in Fig. 5.5 (b)), with cell

size of 40 µm, with a fill factor of 60 %, thus a total number of 625 cells (i.e. SPADs).

This particular technology has a photon detection efficiency (PDE) not matched to the

LLED emission. PDE is about 5% at 800 nm, at 4 V of excess bias (i.e. the difference

between bias and breakdown voltage), as shown in Fig. 5.5 (a). However, NUV SiPM has

the advantage of a low primary DCR, less than 100 kcps/mm2 at 5 V of excess bias (see

Fig. 5.5 (b)), and a reduced correlated noise probability (overall AP+DeCT probability

lower than 5%), which is very important in this kind of application.

To exploit this kind of detector for the application in QRNG, we designed a custom
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(a)

(b)

Figure 5.5: (a) Photon detection efficiency (PDE) as a function of wavelength for NUV

SiPM at excess bias of 2, 4 and 6 V. (b) Dark count rate (DCR) of NUV SiPM versus

excess bias at he temperature of 20◦C. The inset shows the 1 mm×1 mm SiPM containing

625 SPADs with cell size of 40 µm.
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front-end board to amplify and digitalize the analog output signal from the detector

(see Fig. 5.6). This is based on a AD8000 amplifier in a trans-impedance configuration,

followed by a comparator with an adjustable voltage threshold and a monostable, creating

pulses of 3.3 V and 100 ns width. This gives the maximum count rate of the detection

system, which is anyhow limited by the afterpulsing time constant of the detector, giving

an overall time to let all traps to empty, thus an overall time to avoid any possible

afterpulsing, of few hundreds of nanoseconds, as seen in autocorrelation function. As will

be explained in section 5.3, this signal is transferred to an FPGA processing unit for the

generation of random symbols.

Figure 5.6: The front-end board to amplify and digitalize the analog output signal from

the detector. This is based on a AD8000 amplifier in a trans-impedance configuration, fol-

lowed by a comparator with an adjustable voltage threshold (adj.Vth) and a monostable,

creating pulses of 3.3 V and 100 ns width.

5.3 Experimental setup

The experimental setup is schematically shown in Fig. 5.7. The Si-NCs LLED is coupled

with the SiPM at a distance of ∼ 1 mm in free space without an optic or diffuser between

them. The Si-NCs LLED is driven by an Agilent B1500A Semiconductor Device Param-

eter Analyzer. The EL of LLED is monitored by a Hewlett Packard 53131A Universal

Counter 225 MHz by selecting the Totalize mode, so that true pulse counting is performed.

The TTL output of the SiPM is directly connected to the high speed digital input of the

FPGA. The SiPM readout board is connected to a ±5 V and a voltage of ∼30-36 V is

applied to the SiPM by Agilent E3631A DC Power Supply. The EL spectra were obtained

by a Spectra-Pro 2300i monochromator coupled with a nitrogen-cooled CCD camera. The

measurements were performed at room temperature in a dark chamber.

The measurement of the arrival times is performed by a fully synchronous logic. The

FPGA continuously samples the detector at the frequency of 100 MHz, which is crystal

controlled. A valid arrival is produced by a high analog logic level heralded by one clock

cycle (10 ns) of a low analog logic level. A Digilent ATLYS FPGA board has been used

with the programming language VHDL.
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Figure 5.7: Schematic of the experimental setup with Si-NCs LLED coupled with SiPM at

a distance of ∼ 1 mm. The SiPM board is connected to ±5 V and a bias voltage (Vbias)

is applied to SiPM. Si-NCs LLED is driven by an applied current (voltage) provided by

the power supply. The output signal of the SiPM is transmitted to FPGA connected to

PC for the generation of random numbers.

The same approach as in section 4.1 is used here to extract random numbers. The auto-

correlation, g2(τ), measurement of the SiPM signal was performed via a multitau digital

correlator with 4 ns resolution.[124] The afterpulsing and crosstalk distribution exhibits

a main peak within 140 ns from the main autocorrelation peak at τ=0 (Fig. 5.8). The

plateau in g2(τ) approaches the normalization value of 1 at about 950 ns.

Considering the g2(τ) (Fig. 5.8), we set the length of the “double length” intervals (see

Section 4.1.2) to 640 ns, 1280 ns and 1920 ns—with the first half of Ns to be 320 ns, 640

ns and 960 ns, respectively. We see that the correlation coefficient at time lag 1 decreases

from 1.29×10−4 to 1.45×10−5 with the coefficients all inside the 95% confidence interval

(Fig. 5.9). It implies that 960 ns is long enough to mask the afterpulsing and crosstalk

distribution of SiPM (see Fig. 5.8).

5.4 Results and discussions

The measurements for random number generation were performed on the medium Si-NCs

LLED with the active area of ∼ 0.99 mm× 0.82 mm (see Fig. 5.2 (a)) suitable to be

coupled with the SiPM with the dimension of 1 mm×1 mm. The applied forward current

to LLED was kept below ∼ 45 µA corresponding to the forward voltage of 3 V (see

Fig. 5.4), that is the boundary between the direct bipolar and the FN unipolar tunneling,

in order to avoid degradation of the oxide layer in the active area of the Si-NCs LLED
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Figure 5.8: Autocorrelation function (g2(τ)) of SiPM signal (peak at zero is out of scale).

Dead time and afterpulsing and crosstalk distribution of the SiPM can be seen here. The

dead time of ∼110 ns is not due to limitation of the SiPM, but it is set by the monostable

in the electronics (front-end shown in Fig. 5.6).

Figure 5.9: Autocorrelation coefficients for the first 10 time lags for three “double length”

intervals of 640 ns, 1280 ns and 1920 ns corresponding to the first half interval of Ns with

320 ns, 640 ns and 960 ns, respectively. It is seen that the correlation coefficient at time

lag 1 decreases as the length of the interval increases with all the coefficients inside the

95% confidence interval for 1920 ns “double length” interval.
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(with the same structure as the multilayer Si-NCs LEDs in [89] composed of 5 periods

of SRO/SiO2 films with the nominal thicknesses of 3 nm/2 nm). The Vbias to SiPM was

32 V corresponding to an excess bias of ∼4 V with the DCR of ∼80 kcps/mm2.

Setting the “double length” interval to 1920 ns and applying the same methodology in

Section 4.1 we acquired long sequences of datasets. As mentioned before in Section 2.3.2,

a very straightforward way to detect an observable pattern among the random symbols

or codes is to create a 2-D matrix of them. A 512 × 512 2-D visualization of the 16

hexadecimal symbols is presented in Fig. 5.10. As can be seen clearly, no particular,

periodic pattern is observed among the symbols.

Figure 5.11 shows the probability of the generated hexadecimal symbols in a sequence of

1 G symbols. It is seen to follow a nearly uniform distribution (the theoretical value for

the probability distribution of 16 bin symbols (1/16) is indicated by a solid red line in

Fig. 5.11).
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Figure 5.10: A 512×512 map of the hexadecimal symbols. No particular, periodic pattern

is observable among the symbols.

The high quality of random symbols is proved through the following analyses. Joint

probability mass function (JPMF) (section 4.4.1), shows a very low deviation in the

order of ∼ 10−6 from the expected theoretical value of (1/16) × (1/16) = 0.00390625

(Fig. 5.12). The mutual information (MI) of the generated random symbols (Section 4.4.1)

is calculated to be ∼ 10−7 bits considering 1G random symbols. The maximum bias is in

the order of ∼ 10−5 and the min-entropy (see Section 2.3.5) is ∼ 3.9997 bits per nibble

or 4-bits. The highest bit rate is calculated to be ∼ 0.5 Mbps at the EL intensity of ∼
550 kHz.
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Figure 5.11: Probability distribution of 16 hexadecimal symbols in a sequence of 1 G sym-

bols raw data. The solid red line shows the theoretical value of 1/16.
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Figure 5.12: Joint probability mass function (JPMF) for 1 G generated symbols showing

the probability of having each symbol followed by the other one. There is a very low

deviation in the order of ∼ 10−6 from the expected theoretical value of (1/16)× (1/16) =

0.00390625.
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To further analyze the quality of generated random numbers, each symbol is replaced

with its corresponding 4-bit binary values. We then apply the 15 statistical tests in NIST

tests suite to the generated raw data. Various datasets with 1 and 2 Gbits length at

different applied currents to the LLED were obtained. They all passed the NIST tests

without the application of a post processing algorithm irrespective of the EL variations

of the LLED during data acquisition. The results of the NIST tests for 2 Gbits of raw

data are presented in Table 5.2.

Table 5.2: NIST tests results for 2 G random bits. The significance level is α=0.01. In

order to pass, the p-valueT should be larger than 0.0001 and the minimum proportion

should be 0.983.

Statistical test P-valueT Proportion Result

Frequency 0.2861 0.9930 Passed

Block frequency 0.2868 0.9935 Passed

Cumulative sum 0.1657 0.9920 Passed

Runs 0.3298 0.9935 Passed

Longest run 0.4817 0.9910 Passed

Rank 0.3611 0.9860 Passed

FFT 0.0401 0.9910 Passed

Non overlapping template 0.5666 0.9905 Passed

Overlapping template 0.4064 0.9900 Passed

Universal 0.1404 0.9850 Passed

Approximate entropy 0.2854 0.9930 Passed

Random excursions 0.5310 0.9938 Passed

Random excursions variant 0.3127 0.9883 Passed

Serial 0.3376 0.9870 Passed

Linear complexity 0.2550 0.9905 Passed

A comparison of the compact configuration designed here and the bulky configuration of

Chapter 4 is presented in Table 5.3. The DCR of the SiPM is much higher than the DCR

of the commercial Si SPAD (80 kHz vs. 300 Hz) resulting in the average contribution of

the dark counts to be ∼0.15 per “double length” interval of 1920 ns length (it is ∼0.0002

in the case of QRNG in Chapter 4), with the approximate signal to noise ratio of 6.88 at

the maximum bit rate. Therefore, the probability of random symbol generation due to

the dark counts is much higher in this case than the QRNG of Chapter 4. However, the

robustness and efficiency of our methodology make possible the generation of high quality

random numbers even when the contribution from the dark counts of the detector (SiPM

in this case) is high.
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Table 5.3: A comparison of some properties between the bulky configuration with Si-

NCs LED and commercial Si SPAD (see Chapter 4) and the compact configuration with

Si-NCs LLED and SiPM designed in this chapter.

Property Si-NCs LED+Si SPAD Si-NCs LLED+SiPM

PDE of the detector ∼50% at 800 nm ∼5% at 800 nm

Detection area 0.024 mm2 1 mm2

DCR 300 Hz 80 kHz

LED current density 0.2-0.4 mA/cm2 0.8-1.2 mA/cm2

Robustness Robust Robust

Compactness Bulky Compact

Min-entropy ∼ 3.999 bits per 4-bits ∼ 3.999 bits per 4-bits

Bias ∼ 10-5 ∼ 10-5

MI ∼ 10-7 bits ∼ 10-7 bits

Bit rate 1.68 Mbps 0.5 Mbps

5.5 Conclusions

We developed a compact QRNG consisting of a Si-NCs LLED and a SiPM. The robust

methodology introduced in Chapter 4 is found to be robust in this configuration as well.

We set the “double length” interval to 1920 ns to mask the afterpulsing and crosstalk

distribution of SiPM. The analyses on JPMF, MI and min-entropy show high quality of

the generated random numbers. All the statistical test in the NIST tests suite pass for

2 Gbits raw data.

The compact configuration we designed and tested in this chapter, is able to generate

high quality random numbers at the maximum bit rate of 0.6 Mbps. The average of dark

counts per interval (of 1920 ns length) is ∼0.15 which is approximately 750 times more

than that of the bulky configuration of Chapter 4. Even though the contribution of the

dark counts to generate random hexadecimal symbols is much larger here, the quality of

random numbers is still maintained, thanks to our robust and efficient methodology.

The main advantage of the configuration designed in this chapter is the compactness,

with Si-NCs LLED coupled closely with large area SiPM in free space, which allows the

fabrication of a more compact RNG on Si platform. The bit rate can be increased by

parallelization of the Si-NCs LLEDs/SiPM. A more efficient Si large area detector, a

cheaper one (like the SiPM here) than the commercial Si SPAD, which, compared to the

SiPM, has a lower DCR, a lower afterpulsing distribution and higher PDE matching well

the emission from Si-NCs LLEDs, would greatly increase the efficiency of our RNG and

guarantee the quantum nature of the generated random numbers.
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Chapter 6

A compact chip with Si-NCs large

LED coupled with an array of

SPADs

In this chapter, a method based on an array of 16 SPADs connected to 4 TDCs is con-

sidered to generate random numbers. A compact chip has been prepared with bonded

Si-NCs LLED (Section 5.1) coupled with a bonded array of SPADs connected to TDCs.

The approach to generate random numbers is based on photon arrival times. At the

beginning of this chapter, the theory is explained. Then, the experimental procedure,

results and discussions are presented and at the end, some conclusions are drawn.

6.1 The oversampling technique

In the architecture used in this chapter, the time information is calculated with respect

to a reference signal (clock) thanks to a TDC. In this scheme, the TDC works as a digital

chronometer where the event forces a start and the falling edge of the clock stops the

counts. The period of the clock defines the observation window Tw and the measurement

rate, meaning that for each period of the clock the detector gives at most one measurement

(see Fig. 6.1).

Figure 6.1: Detection scheme used in the sampling model for a detector.
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The oversampling technique can be used in a condition of low flux of photons and high

sampling rate of the detector, based on a high resolution TDC. From Eq. B.2, the arrival

time between events is modeled by an exponential distribution. If we consider the model

of the architecture described before–where the arrival time of a photon is computed with

respect to a synchronous clock–and let our observation window be Tw and let its mid-point

be tm = Tw/2, we might then choose to digitize our photon arrival times, ta, according to

a simple output rule such as: 0 if ta ∈ [0 tm)

1 if ta ∈ [tm Tw)

The output would have some bias written precisely using the exponential distribution as:

δ = |P (0)− P (1)| =
∫ tm

0

f(t;λ)dt−
∫ Tw

tm

f(t;λ)dt (6.1)

where f(t;λ) is the probability density function (pdf) of an exponential random variable

with rate parameter λ at t (see Appendix. B). The first integral is greater than the second

because Tw = 2tm, so we can drop the absolute value. This can be easily rewritten as:

δ = 2

∫ tm

0

f(t;λ)−
∫ Tw

0

f(t;λ)

= 2ξ(tm;λ)− ξ(Tw;λ)

= 2
(

1− e−
λTw

2

)
−
(
1− e−λTw

) (6.2)

where ξ(t;λ) is the cumulative distribution function (cdf) of an exponential random vari-

able with rate parameter λ at t and is equal to 1− e−λt (Eq. B.2). It can be seen clearly

from the equation that the bias value δ increases with λ.

If in our approach n equi-distant intervals are considered so that more than one bit at

a time is generated, the most appropriate measure of distance from uniformity would be

the total variation distance (TVD) rather than the bias. It is computed as [136]:

TV D(P,Q) = ||P (x)−Q(x)||1 =
1

2

∑
x

|P (x)−Q(x)| (6.3)

where P and Q are two probability measures defined on the space Ω of measurable events

x. If the TDC resolution is n codes each one with the probability of p(i) i=1 ... n, we

can rewrite the TVD in Eq. 6.3 as:

TV D =
1

2

n∑
i=1

∣∣∣∣p(i)− 1

n

∣∣∣∣ (6.4)

As seen before in Eq. 6.2, the bias reduction is almost directly proportional to the reduc-

tion in the photon count; in other words, reducing the TVD by an order of magnitude
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also reduces the count by the same. When λTw < 1 the photon rate is lower than the

sampling frequency and we are in weak oversampling region. For values of λTw lower than

0.1, we are in moderate oversampling region. In this case the exponential distribution can

be approximated by a linear decay, meaning that the resulting codes suffer from a bias.

When the detector, instead, is working in strong oversampling region, λTw is lower than

0.01 and the codes produced by the TDC have an approximately uniform distribution.

6.2 Architecture

In this section the structures of the detection and random module as well as source of

entropy are presented.

6.2.1 Detection and random module

The architecture under study consists of 18 pixels: the 16 central pixels are connected to

the compression tree circuit while dummy pixels in first and last positions are used only

for testing purpose. The compression tree is connected to a block of 4 TDCs for time

information plus an address finder for recovering the spatial information (Fig. 6.2).

The detector works in this way: internal logic into each pixel allows to enable all SPADs

at the same time for a specific observation window Tw. In this period of time the detector

can acquire and process photons. The working regime is set in order to detect a small

amount of photons per Tw, then, typically, only one of the SPADs triggers. Let us suppose

for example that pixel number 8 detects a photon. The front end circuit generates, at

the detection, an electrical pulse which propagates along a network (compression tree

network of Fig. 6.2), which connects all SPADs of the array to the TDC block. This

block determines the arrival time of the photon as soon as the pulse is detected. In the

meanwhile another circuit allows determining the position of the pixel has fired (in this

case the position is 8). At the end of the measurement the output of the detector will

deliver two information: the arrival time of the photon and the position of the pixel that

has fired.

In case of multiple detections within the same temporal window Tw, the architecture

allows to trigger the first TDC, at the presence of the first photon, then the second TDC

when a second photon is detected. The architecture is able to manage up to 4 events.

In case of empty measurement (no photon) or more than 4 photons (full condition) a

flag is enabled: EMPTY and EXFULL. When High, EMPTY signal informs that the

memory is empty. This flag can be useful to fast monitor a presence of photon detection

in Tw or to indicate, during the readout, when the memory has been completely delivered.

Flag EXFULL (High) inform about the presence of a missed photon, meaning that the

number of TDC was not suitable to address the detection of photons. Figure 6.3 shows
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Figure 6.2: Block diagram of the architecture based on the oversampling technique.

the oversampling architecture with maximum 2 TDCs configuration: the third photon

enables the EXFULL flag.

Depending on signal configuration (see Table 6.1), the structure can work with 1 up to 4

TDCs working in Tw (NTDC signals). Moreover an anti-collision circuit can be activated

in order to avoid the superposition of events. In case of multiple detections, it is clear

that information about the arrival times is ordered, meaning that e.g. TDC1 is always

lower than TDC2 and so on for all four TDCs. In order to avoid this type of correlation,

we can use a second source of entropy which is given by the pixel address: the TDC values

are then ordered by the pixel address.

Table 6.1: Signal configuration of the detection and random module architecture of the

compact chip.

Signal Configuration Description

MODE Low Counting Mode

MODE High Oversampling Mode

CONTROL High Pixel with Anti-Collision Circuit

NTDC< 0 > Low
Maximum Number of TDC=1

NTDC< 1 > High

NTDC< 0 > Low
Maximum Number of TDC=2

NTDC< 1 > Low

NTDC< 0 > High
Maximum Number of TDC=3

NTDC< 1 > High

NTDC< 0 > High
Maximum Number of TDC=4

NTDC< 1 > Low
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Figure 6.3: simulation of the oversampling architecture imposing a maximum number of

TDC equal to two. As a consequence of this setting the third photon will be discarded

and the EXFULL flag is activated indicating that the number of TDC was not suitable

to address the detection of photons. CKm is the synchronous main clock, Vcom is a

common line which is pulled down as soon as a SPAD triggers avoiding other SPADs to

be propagated through the network, and Pin is the input of the block of 4 TDCs which is

the pulse propagated through the compression tree network.

6.2.2 Source of entropy

The source of entropy is Si-NCs LLED with size s (see Section 5.1) coupled with the array

of 16 SPADs matching quite well the size of the surface area of the pixels. The compact

chip mounted on a PCB board can be seen in Fig. 6.4. The backside of the bonded LLEDs

(a diced section containing s, m and b Si-NCs LLED) is visible in the figure. The Si-NCs

LLED s on the front side is coupled with the cluster of 16 pixels (SPADs) connected to

4 TDCs. The LLED and SPADs are biased by two power supplies and the main board, on

which the compact chip is mounted, is controlled by National Intstruments (NI) Labview

programs for counting and random modes.

6.3 Data readout

The main clock (PRE) allows precharging each SPAD at every cycle of measurement.

During the counting mode, after a reset period at the beginning (where PRE=High), the

signal is forced to be Low, being the dead time mechanism originated asynchronously by

the counter block.

Timing diagram of Fig. 6.5 describes how to implement different waveforms in this modal-

ity. In this configuration signal MODE=Low and CNTENABLE allows to count the SPAD

into each counter. At the same time CNTENABLE defines the integration time meaning
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Figure 6.4: The compact chip comprising a Si-NCs LLED as the source of entropy coupled

with an array of 16 SPADs connected to 4 TDCs.

that, when High disables the buffers and stops the counting.

Figure 6.5: Timing diagram for counting mode.

When working in counting mode (see Fig. 6.6), the detector has to deliver the content of

the counters. After reset (RN =Low, RN is the digital reset) and the integration time Tint

defined by signal CNTENABLE, all outputs should be forced to gnd! (digital ground).

Signal MODE has to be forced to L in order to properly set the output multiplexers.

Signal CKCNT is used in order to scan all counters. We need 18 iterations in order to

readout all counters (8 parallel bits). (Fig. 6.6).

In random number generation, the output of the chip is made of 8 (for pixel address and

TDC value) plus 2 bits for chip empty and full flag. The saved file is organized in this

way:

1. For each frame (a single temporal window Tw) 4 TDC values are acquired (regardless

how many photons are acquired);
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Figure 6.6: Timing diagram for readout counting mode. The integration time Tint is

defined by signal CNTENABLE. Signal CKCNT is used in order to scan all counters.

2. Every TDC value consists of two words (=32 bits), giving a total of 8 words per

frame;

3. The TDC and pixel address information (2 words) is divided in 4 bytes:

a. First byte contains information about the LSB part of the TDC (4 bis) + pixel

address (4 bits)

b. Second byte contains bit FULL and bit EMPTY, giving information about the

status of the measurement;

c. Third byte has the TDC MSB (8 bits);

d. Fourth byte contains again bit FULL and bit EMPTY.

First and the second word structures can be seen in Table 6.2. The TDC value is then

calculated as:

TDC = MSB× 12 + LSB

Flag information:

Table 6.2: First and second word structures containing TDC and pixel address informa-

tion.

First Word

LSB of the TDC Pixel Address Flags Not Considered

LSB4 LSB3 LSB2 LSB1 Add4 Add3 Add2 Add1 Full Empty – – – – – –

Second Word

MSB of the TDC Flags Not Considered

MSB8 MSB7 MSB6 MSB5 MSB4 MSB3 MSB2 MSB1 Full Empty – – – – – –

When one of the two flag is asserted (=1) a full or empty condition is detected. In

particular the Empty flag can help us understand which TDC values have sampled real

value and which not.

We can have these different cases:
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1. Empty=1 on the first word of the first TDC → all 4 TDCs of the frame has to be

discarded;

2. Empty=1 on the second word of one of the TDC value → represents the last valid

TDC value of the frame.

Examples:

In the following frame (4 TDCs):

0101 0111 0100 0000 0000 0000 0100 0000 1st TDC empty flag on first word →discarded

0010 0011 0100 0000 0000 0000 0100 0000 2nd TDC → discarded

1000 1011 0100 0000 0000 0000 0100 0000 3rd TDC → discarded

0111 0001 0100 0000 0000 0000 0100 0000 4th TDC → discarded

In the following frame (4 TDCs):

0101 0111 0000 0000 0101 1000 0100 0000 1st TDC empty flag on second word → last

valid TDC of the frame

0010 0011 0000 0000 0000 0000 0000 0000 2nd TDC → discarded

1000 1011 0100 0000 0000 0000 0000 0000 3rd TDC → discarded

0111 0001 0100 0000 0000 0000 0000 0000 4th TDC → discarded

In the following frame (4 TDCs):

0101 0111 0000 0000 0101 1000 0000 0000 1st TDC → TDC=88x12+5=1061 Ad-

dress=7

0010 0011 0000 0000 1100 0100 0000 0000 2nd TDC → TDC=196x12+2=2354 Ad-

dress=3

1000 1011 0100 0000 0001 0101 0100 0000 3rd TDC → TDC=21x12+8=260 Ad-

dress=11

0111 0001 0100 0000 0000 0000 0000 0000 4th TDC → discarded

6.4 Experimental procedure

Using the experimental setup schematically shown in Fig. 6.4, we changed some parame-

ters such as the voltage bias to the SPADs and Vc and Vreg which regulate the reset pulse

of SPAD logic block and voltage for TDCs, respectively, in counting and random mode

for data acquisition process. The details are presented in Sections 6.5.1 and 6.5.2 where

the SPADs are characterized in dark and light conditions and random codes are acquired,

respectively. The limits and drawbacks of the system are explained and future activities

to improve the system, with respect to random number generation, are expressed.
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6.5 Results and Discussion

6.5.1 SPADs characterization

The DCR of the 18 SPADs (including the first and last dummy ones) at the bias voltages

of 23.5, 24 and 24.5 V are shown in Fig. 6.7 (a), (b) and (c), respectively. As can be

seen clearly, the SPADs show different DCRs and SPAD17 (the last SPAD in the array

of 16 pixels) shows the highest DCR. When working with all SPADs, we can turn off the

SPADs which have the highest activities, i.e. highest DCR.
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Figure 6.7: The DCR of the array of 18 SPADs (including 2 dummy ones) at the applied

bias voltage of (a) 23.5 V, (b) 24 V and (c) 24.5 V. The error bars are shown in the figures

and are visible for some data points.

When the LLED is on (at the applied voltage of 2.9 V), we can see in Fig. 6.8 (a), (b)
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and (c) that the SPADs show different counting rates, as would be expected from DCR

analyses with SPAD17 showing the highest counting rate at all applied bias voltages of

23.5, 24 and 24.5 V to the SPADs. Moving from the middle SPADs to the beginning and

ending ones, a gradual decrease in the count rate (except for SPAD17 which, as mentioned

before, has the highest activity) is observed.

It should be due to two reasons: on the one hand, based on the uniformity measurements

of the emission from the s Si-NCs LLEDs (see Fig. 6.9 (b)), the detected photon rate

gradually decreases from position 1 to 3 (from right to left) as can be seen in Fig. 6.9 (a).

On the other hand, despite the approximately equal length of the s LLED and the array

of SPADs (∼1.02 mm and ∼1 mm, respectively), even a tiny misalignment between them

would result in a reduced illumination of the SPADs locating further from the ones in the

middle. These two reasons most probably cause such behavior in the counting rate of the

SPADs.

6.5.2 Generation of random numbers

Based on the analyses of the DCR of the array of the detectors, we chose SPAD8 to begin

the measurements with since it has the lowest mean of DCR ∼97 cps (at VSPAD=24.5 V)

with standard error of 2.9 cps (see Fig.6.7 (c)). Using SPAD8 and TDC1, we tried to fix

some parameters. As a single TDC, due to some fabrication restriction, we can choose

only TDC1. If we want to use TDC2, it has to work together with TDC1. It is the same

for TDC3 and TDC4, as well, that cannot work individually and they have to work with

TDC1 and 2 and TDC1, 2 and 3, respectively.

Using the Labview program for the random mode and fixing the applied voltage to the

LED to 2.9 V, we acquired sequences of TDC codes. Since we saw some missing TDC

codes and some periodic oscillations in the TDC codes distribution due to LSB codes,

we just considered the MSB codes of the TDC. At this stage we did not fix the average

counting rate in order to satisfy the oversampling regime condition and hence having a

nearly uniform distribution. Therefore, the MSB codes follow an exponential distribution

with smaller codes having higher probability and bigger codes lower probability. Fixing

Vreg to 2.75 V, Vc to 1.2 V, VLLED to 2.9 V (with signal to noise ration (SNR) of ∼60–70)

and Tw to 140 µs, we applied the bias voltage of 23 and 25 V to SPAD8 and studied the

MSB codes probability distribution. We observe that:

• MSB codes of 0 and 1 as well as >241 have very high probabilities making some

peaks at the beginning and the end of the distribution and hence are not shown in

Fig. 6.10.

• At the beginning and the end of the MSB codes probability distribution when the

VSPAD is 23 V, there is a ringing (see Fig. 6.10 (a)). However, as it is seen in
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Figure 6.8: Counting rate of the array of 18 SPADs (including 2 dummy ones) at the

applied voltage of 2.9 V to Si-NCs LLED and the applied bias voltage of (a) 23.5 V, (b)

24 V and (c) 24.5 V to the SPADs. The error bars are shown in the figures and are visible

for some data points.
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Figure 6.9: (a) The three positions on the s Si-NCs LLED to check the uniformity of EL.

The spot diameter is 450 µm. (b) EL of the three positions on the s Si-NCs LLED. For

the statistics analyses at each position, 20 EL values were obtained, each over 10 seconds

of integration time. Then the mean value (the dashed bars) and the mean of this mean

value (the dashed line) are computed. The red error bars indicate the deviation of each

EL mean value from the mean of mean value.
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Fig.6.10 (b) it fades away from the beginning of the distribution when we apply a

bias voltage of 25 V to the SPAD. We could not remove the ringing at the end of

the distribution by adjusting different parameters since it is most probably due to

some parasitic capacitances and inductances caused by the electrical signal of TDC

in the circuit (i.e. those that are not part of the design, but just by-products of the

materials used to fabricate the circuit) to resonate at their characteristic frequency.

Therefore, we fixed the bias voltage of 25 V to SPAD8 and acquired long sequences of

TDC codes considering the MSB codes for further analyses with VLLED = 2.9 V and

Tw = 112.5 ns (satisfying the oversampling regime of λTw ∼ 0.0008). The 512x512 2-D

visualization (see Section 2.3.2) of MSB codes (0-255) is illustrated in Fig. 6.11. No par-

ticular, periodic pattern is visible among the codes.

The MSB codes probability distribution for codes 2-241 can be seen in Fig. 6.12. The

probabilities are distributed around the theoretical value of 1/240. The TVD is computed

to be ∼ 0.0037 (Eq.6.4).

Replacing each MSB code (2-241) with its corresponding 8-bit binary 0 and 1, we obtained

108 bits (data acquisition is very slow and since we consider only MSB codes 2-241, it

takes a very long time to acquire sequences of 108 bits) and applied the frequency test in

NIST tests suite (see Section 2.3.7.1.1). This test fails since although we discarded the

MSB codes of 0, 1, and >241, the maximum bias is still high ∼0.005.

After the application of the information-theoretically secure randomness extractor of

Toeplitz function (see Section 3.3.4.2), all the statistical tests in NIST tests suite pass.

The results of the NIST tests before and after the application of Toeplitz are presented in

Table 6.3. With all SPADs and 4 TDCs working, however, we do not have the problem

of missing codes. Codes from 0 to 3050 appear which make the efficiency of TDC code to

∼ 11.5 bits instead of 12 bits. This is another drawback due to the TDC structure. The

probability distribution of TDC codes is presented in Fig. 6.13 (a). The ringing is visible

at the end of the distribution. The probability of counts detected by each SPAD can be

seen in Fig. 6.13 (b). The probabilities vary from one SPAD to the other and SPADs 1

and 16 are found to have the closest probabilities to the expected theoretical probability of

1/16 with deviations of ∼0.00082% and ∼0.0023%, respectively. The visual presentation

of the TDC codes in Fig. 6.14 does not show any particular, periodic pattern. On the

other hand, as can be seen in Fig. 6.15 (a), there is correlation among the TDC codes for

the first 10 lags (autocorrelation coefficient is outside the 95% confidence interval).

The solution would be to separate the codes based on the address, i.e. the codes produced

by each pixel are put together, and are then concatenated to produce a string of TDC

codes. This will remove the correlation among the codes as observed in Fig. 6.15 (b).

TVD is calculated by Eq. 6.4 to be ∼0.087. Since the data acquisition of this type of

configuration, with all SPADs and 4 TDCs working together, is very time consuming, we
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Figure 6.10: MSB codes (100 M codes 2-241) probability distribution of TDC1 fixing Vreg

to 2.75 V, Vc to 1.2 V, VLLED to 2.9 V and Tw to 140 µs at VSPAD (a) 23 V and (b) 25 V.

The ringing at the beginning of the distribution in (a) is removed in (b) when we apply

the bias volatge of 25 V to the SPAD.
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Figure 6.11: 512x512 2-D visualization of MSB codes. No particular pattern is observed

among the codes.
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Figure 6.12: MSB codes (100 M codes 2-241) probability distribution of TDC1 with

VSPAD=25 V, VLLED=2.9 V, and Tw=112.5 ns with the oversampling condition of∼0.0008.

The theoretical value of 1/240 is indicated by the blue line. The ringing at the end of the

distribution is also visible here.
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Table 6.3: Results of the statistical NIST tests for the datasets of 100 and 94 strings

of 106 bits of data before (raw data) and after the application of Toeplitz randomness

extractor, respectively. The P-valueT has to be larger than 0.0001. The minimum pass

rates for statistical tests is 0.960. The worst case results are shown here.

Raw data Toeplitz-extracted data

Statistical test P-valueT Proportion Result P-valueT Proportion Result

Frequency 0.000000 0.000 Failed 0.051942 1.000 Passed

Block frequency 0.000000 1.000 Failed 0.401199 0.990 Passed

Cumulative Sums 0.000000 0.000 Failed 0.249284 1.000 Passed

Runs 0.000000 0.000 Failed 0.816537 0.990 Passed

Longest run 0.000000 0.000 Failed 0.015598 0.990 Passed

Rank 0.637119 1.000 Passed 0.037566 0.990 Passed

FFT 0.145326 0.990 Passed 0.455937 0.960 Passed

Non-overlapping template 0.000000 0.000 Failed 0.678686 1.000 Passed

Overlapping template 0.000000 0.000 Failed 0.334538 1.000 Passed

Universal 0.000000 0.000 Failed 0.964295 0.990 Passed

Approximate entropy 0.000000 0.000 Failed 0.040108 0.990 Passed

Random excursions n/a n/a 0.756476 1.000 Passed

Random excursions variant n/a n/a 0.619772 0.952 Passed

Serial 0.000000 0.150 Failed 0.010988 0.960 Passed

Linear complexity 0.494392 1.000 Passed 0.181557 0.980 Passed

could not acquire enough data for further statistical analyses. More studies are supposed

to be done in the future as expressed in Section 6.6.

6.6 Conclusions and future activities

We realized a compact chip comprising a bonded Si-NCs LLED coupled with a cluster

of 16 pixels (SPADs) connected to 4 TDCs to generate random numbers. Based on the

characterization of the SPADs in dark and light conditions, we found out that SPAD8,

with the lowest DCR, would be a good candidate to be used as the detector with TDC1 in

order to run the random mode. Since we saw some missing TDC codes and some periodic

oscillations in the TDC codes distribution due to LSB codes, we just considered the MSB

codes of the TDC. We considered the MSB codes >1 and < 242 in order to approach

the nearly uniform distribution for the probability of MSB codes. Replacing each MSB

code with its corresponding 8-bit binary 0 and 1, we acquired 108 bits and executed

the statistical NIST tests. They failed due to a high bias of ∼0.005. However, after

the application of the information-theoretically secure randomness extractor of Toeplitz

function, they all passed.

Going from 1 SPAD/1 TDC to all SPADs/4 TDCs, the problem with missing codes
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Figure 6.13: (a) TDC codes (100 M codes 0-3050) probability distribution of all pixels and

4 TDCs working together.The ringing is visible at the end of the distribution. (b) Prob-

ability of counts for each SPAD when all SPADs are working with 4 TDCs. Vreg is fixed

to 2.75 V, Vc to 1.2 V, VLLED to 2.9 V, Tw to 112.5 ns and VSPAD to 25 V.

resolves. However, due to some drawback of the TDCs, the effiency of TDC code is not

12 bits per code but ∼11.5 bits per code. The visual representation of the TDC codes

doen not show any particular, periodic patterns. The autocorrelation analysis reveals that

for the first 10 lags the correlation coefficients stay out of the 95% confidence interval.

The correlation is eliminated by ordering the TDC codes based on the pixel address and
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Figure 6.14: 512x512 2-D visualization of TDC codes. No particular, periodic pattern is

observed among the codes.

concatenate them to produce a sequence of TDC codes.

The data acquisition is very slow and hence for more than 1 TDC configurations obtaining

long sequences of codes is really time consuming. The future outlook is to optimize

the data acquisition step in order to speed up the generation of random numbers and

eventually the efficiency of our QRNG.
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Figure 6.15: Autocorrelation function of (a) TDC codes and (b) TDC codes ordered based

on the SPAD address. It can be seen that the correlation among the TDC codes at the

beginning 10 lags is removed in (b) and the correlation coefficients in are placed inside

the 95% confidence interval.
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Chapter 7

A Robust QRNG Based on an

Integrated Chip

‘‘Small is beautiful.’’

Leopold Kohr

Integration of the source of entropy and the detector on a single chip is an efficient way

to produce a compact RNG. A small QRNG is an essential element to guarantee the

security of our everyday life. It can be readily implemented into electronic devices for

data encryption. The idea of “utmost security” would no longer be limited to particular

organs owning sensitive information. It would be accessible to every one in everyday life.

7.1 State of the art

Examples of the integrated chips containing the source of entropy and the detection

stage can be found in [65, 137]. In [137], a quantum entropy source for random number

generation on an indium phosphide (InP) photonic integrated circuit is demonstrated. In

the scheme designed by Abellan et al. [137], two distributed feedback lasers are combined

on the same chip. One laser is operated in gain switching (GS) mode, while the second

one is in CW mode. The interference of the chirped frequency (due to thermal effects)

of the GS laser with the stable frequency of the CW laser is used to generate random

numbers. When these two frequencies coincide, a nearly zero detuning (NZD) region

is observed. Therefore, in the experiments, the NZD region is tuned at the end of the

pulse to maximize the detuning frequency between the lasers so as to reduce any residual

phase-locking effects.

In the approach in [137], several parameters need to be controlled such as the temperature

which is kept at 25◦C during the experiment and the relatively low modulation frequency

of 100 MHz to capture properly the dynamics of the interference pattern within the GS
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pulse. It is claimed that the modulation frequencies up to 2 GHz are reachable allowing for

tens of Gbps raw generation rates using current analog-to-digital conversion technologies.

In addition, the impossibility of creating a Si laser source does not permit taking advantage

of Si photonics which is a promising candidate for building scalable optical applications

due to its compatibility with the microelectronics industry.

Reverse-biased Si-LEDs emit light in the visible and near-infrared regions of the light

spectrum. [138, 139] In [65], there is an integration of a ring-shaped Si SPAD around

the Si-CMOS-LED on a single chip to generate random numbers. Random numbers

are produced by considering pairs of non-overlapping random time intervals (ti, ti+1) of

sequential photon arrivals and by defining the digital output as:
1 if ti > ti+1

0 if ti < ti+1

discarded if ti = ti+1

i = 1, 2, 3, . . .

There is a large bias in the raw data due to the non-uniform distribution of the time

intervals. The large bias is removed by post-processing in a special configuration of XOR

gates to improve the randomness of the generated random bits. [65]

In this chapter, we demonstrate a QRNG based on an integrated chip composed of an

emitter containing 16 pixels (Si SPADs) with p+/n Si junction (see the structure in

Fig. 7.3) (a) and a single Si SPAD (as the detector) with the same structure as each pixel

of the emitter. The same approach as the robust methodology in Chapter 4 is used here

as well to generate random numbers. The advantages of our RNG over [137] and [65] are:

• no post-processing operation is used to eliminate the bias and correlation of the raw

data, and

• when we set the system to work, we do not need to control the parameters involved

in the experiment from then on. The methodology we use to generate random

numbers is robust against the variations of temperature, the non-idealities of the

detector and some other parameters like the applied voltage bias to the source of

entropy.

7.2 Photon emission from a reversed-bias Si LED

As mentioned in the previuos section, light emission from reverse-biased Si-LEDs has

been reported in the visible and near-infrared regions of the light spectrum. [138, 139]

Photon emission is attributed to some mechanisms (schematically shown in Fig. 7.1) such

as direct and indirect interband transitions, intraband bremsstrahlung radiation from hot

electrons scattered by charged coulombic centers and intraband transitions of hot holes
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Figure 7.1: Possible mechanisms for the avalanche emission from reverse-biased Si p-n

junction: (a) direct interband recombination, (b) intraband h transition, (c) indirect in-

terband recombination and (d) intraband bremsstrahlung. Reproduced, with permission,

from [141] © 2011, IEEE.

between the light and heavy-mass valence bands. [140]

The EL spectra of the emitter versus photon energy, at the applied bias (Vemitter) of 54.8,

55.1 and 55.3 V to the emitter, are presented in Fig. 7.2.

Based on the spectra of the emitter (a reversed bias p+/n Si junction) in Fig. 7.2, three

different sections (with fit for indirect interband, intraband bremsstrahlung and direct

interband mechanisms for the spectrum plot at Vemitter = 55.1 V) can be observed. The

fit for direct interband is based on the formula presented in [140]:

I(Eph) = A
√

(Eph − Eg)Eph

[
1 +B

(
Eph

W

)]
exp

[
−
(
Eph

W

)]
,

where I is the emission intensity, Eph is the photon energy, Eg the band-gap energy, A is

an empirically determined constant and B depends on the exponential integral of E0/W

with E0 and W being the threshold for e−h pair generation and a number depending on

electric field and mean free path, respectively. [140]

The intraband bremsstrahlung region has been fitted by the following formula [140]:

I(Eph) = C exp

(
Eph

kTe

)
,

where C is an empirically determined constant, k0 the Boltzmann constant and Te is

the electron temperature. The bremsstrahlung intraband response is monotonic and is,
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therefore, unable to explain the observed peaks in the spectrum. [140]

The fit for indirect interband (occurring at low photon energies) is based on the formula

presented by Gautam et al. [142]:

I(Eph) = G(Eph)(Eph + kθ − Eg). exp−
(
Eph + kθ −∆F

k0T

)
. exp

(
Eph + kθ

k0Th

)
. exp

[
−a

2
(Eph + kθ − Eg)

]
.I1

[a
2

(Eph + kθ − Eg)
]
,

where G is the gamma function, T the silicon lattice temperature, Th the hole temper-

ature, k the component of wave vector in the field direction, a = [1/k0Te + 1/k0Th] and

I1 is the modified Bessel function of order one. [142] The fitting parameters are fixed as

Te = 2000◦, T = 280◦C, W = 0.3 eV , B = −0.013, lioe = 68 Åand lioe = 68 Å(the two

latter are the ionization length of e and h, respectively.) [140]

For energies lower than ∼1.8 eV, photon emission is attributed to indirect interband tran-

sitions of high field carrier populations. The indirect interband processes depopulate the

conduction band and reduce bremsstrahlung intensity at these energies. [140]

However, for energies ∼1.8-2.2 eV, the emission is predominantely through indirect in-

traband (bremsstrahlung) processes. For energies above ∼2.2 eV, the direct interband

transitions dominate and generate the spectra.

7.3 Chip structure

As mentioned before in Section 7.2, at avalanche breakdown Si LED emits photons with

visible or near-infrared wavelengths. This effect can be used advantageously to integrate

Si SPADs as both the source of entropy and the detector on a single chip. Since the

quantum efficiency of Si SPAD is very low, we can use an array of them (emitter) to

generate more carriers in order to multiply the efficiency.

The structure of the integrated emitter and detector is shown in Fig. 7.3 (a). The emitter

is an array of 16 pixels each with the same specifications of the cells in SiPM presented

in Section 5.2. The detector, which is one single Si SPAD, is located on one side of the

emitter (on its left in the figure). The emitter is connected to the detector as schematized

in Fig. 7.3 (b). Both emitter and detector work in reversed bias region and the overall

bias to the emitter is Vemitter = VSPAD − Ve.

7.4 Experimental procedure

The experimental setup is presented in Fig. 7.4. The chip readout board is connected to

a ±5 V . Bias voltages of VSPAD ∼30-36 V is applied by Agilent E3631A DC Power Sup-

ply and the negative voltages for Ve are provided by an Agilent B1500A Semiconductor

118



Chapter 7. A Robust QRNG Based on an Integrated Chip

1.2 1.4 1.6 1.8 2.0 2.2 2.4

102

103

Indirect interband

Intraband Bremsstrahlung
El

ec
tro

lu
m

in
es

ce
nc

e 
(a

.u
.)

Photon Energy (eV)

 Vemitter = 54.8 V
 Vemitter = 55.1 V
 Vemitter = 55.3 V
 Indirect interband
 Intraband bremsstrahlung
 Direct interband

Direct
interband

Figure 7.2: EL versus photon energy (eV) for the emitter in the integrated chip at the

applied bias Vemitter of 54.8, 55.1 and 55.3 V (corresponding to the VSPAD = 36.8 V and Ve

of -18, -18.3 and -18.5 V, respectively. The fitted curves for three mechanisms of indirect

interband, intraband bremsstrahlung and direct interband can be seen for the red curve

with Vemitter = 55.1 V .

(a) (b)

Figure 7.3: (a) Integrated emitter and SPAD (detector) structure. The structure of the

emitter (an array of 16 Si SPADs) and the detector (one single Si SPAD on the left

of the emitter) can be seen on the right in a large scale. (b) Schematic of the circuit

of the emitter and SPAD connected to each other. The overall bias to the emitter is

Vemitter = VSPAD − Ve and the output signal is amplified before reaching the FPGA for

random numbers generation.
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Device Parameter Analyzer. The count rate of the SPAD, which is detecting the EL of

the emitter, is monitored by a Hewlett Packard 53131A Universal Counter 225 MHz by

selecting the Totalize mode, so that true pulse counting is performed. The TTL output

of the front-end circuit is directly connected to the high speed digital input of the FPGA.

The EL spectra were obtained by a Spectra-Pro 2300i monochromator coupled with a

nitrogen-cooled CCD camera. The measurements were performed at room temperature

in a dark chamber.

Figure 7.4: Schematic of the experimental setup for random numbers generation. The

chip board is connected to ±5 V and a bias voltage (VSPAD) is applied to the SPAD. The

bias voltage of Ve is provided by an Agilent B1500A Semiconductor Device Parameter

Analyzer. The output signal of the SPAD is transmitted to FPGA connected to PC for

the generation of random numbers.

Autocorrelation, g2(τ), measurement of the Si SPAD signal was performed via a multitau

digital correlator with 4 ns resolution [124] at the applied voltage Vemitter = 53 V (cor-

responding to VSPAD = 36 V and Ve = −17 V). The afterpulsing distribution exhibits a

main peak within ∼224 ns from the main autocorrelation peak at τ=0 (Fig. 7.5). The

plateau in g2(τ) approaches the normalization value of 1 at about 4.5 µs.

The pulses from the Si SPAD are recorded via a multichannel scaler Ortec Easy-MCS

for the analysis of Poisson distribution fully described in Section 3.3.1.1. MCS has a

minimum channel (bin) width of 100 ns and has no dead time between the channels. The

scan length is variable from 4 to 65,536 channels. The results are presented in the next

section.

7.5 Results and discussions

The SPAD signal was sent to the MCS (with bins set to have different mean of pho-

tons) to study Poisson distribution. At different mean values from 0.2 to 2, we observed

that p-value was always lower than α. Based on the χ2 statistic, since p-value< α we
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Figure 7.5: Autocorrelation function (g2(τ)) of the Si SPAD signal (peak at zero is out

of scale) at the applied voltage of Vemitter = 53 V (corresponding to VSPAD = 36 V and

Ve = −17 V). Dead time (∼70 ns) and afterpulsing distribution of the detector can be

seen here.
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conclude that the Poisson distribution does not match well with the obtained data (see

Section 3.3.1.1). And since the variance of data is larger than the mean, we conclude that

the distribution could be super-Poissonian. The result of a measurement for mean value

of ∼0.96 is illustrated in Fig. 7.6 (b) with the variance of ∼1.13.

In order to understand if this occurrence is attributed to the SPAD or the emitter, we

conducted measurements with SPAD dark counts in addition to the SPAD signal when

illuminated by Si-NCs LLED and commercial red LED. We observed that, for different

mean values, the Poisson fit would be appropriate for distribution of the acquired data

(see Fig. 7.6 (a) for SPAD dark counts).

We can conclude that the Poisson distribution does not seem to be a suitable fit for the EL

of the emitter due to the bunching of the emitted photons. Furthermore, we conducted

the cross-correlation measurement described in Sections 3.3.1.1 and 3.3.3 using the same

setup in Fig. 3.8 with Si-NCs LED replaced with the emitter (at the applied bias of

Vemitter = 52V). The cross-correlogram is presented in Fig. 7.7. A peak (due to photon

bunching) is visible in the plot indicating a super-Poissonian distribution of the detected

photons with the mean greater than the variance and photon number fluctuations larger

than a coherent light (see Section 3.3.1.1).

Taking into account the afterpulsing distribution of the SPAD in Fig. 7.5, we set the

length of the “double length” interval (see Section 4.1.2) to 8960 ns with subintervals of

140 ns. Having fixed Vemitter = 54 V (corresponding to VSPAD = 37 V with DCR ∼ 80 cps

and Ve = −17 V), we acquired sequences of symbols for further analysis. The visual

representation can be seen in Fig. 7.8 for a matrix of 512x512 symbols. As it is observed

in the figure, no particular, periodic pattern exists among the symbols.

The probability distribution of the symbols is nearly uniform (Fig. 7.9). The analysis of

the JPMF (see Section 4.4.1) shows a departure of ∼ 10−6 from the theoretical value of

1/16× 1/16 (Fig. 7.10).MI of the generated random symbols (section 4.4.1) is calculated

to be ∼ 10−7 bits considering 1G random symbols. The maximum bias is in the order of

∼ 10−5 and the min-entropy (see Section 2.3.5) is ∼ 3.999 bits per 4-bits. The highest bit

rate is calculated to be ∼ 100 kbps (see Fig. 7.11).

Replacing each hexadecimal symbol with its corresponding 0 and 1 binary, we acquire

long sequences of data. The results in Table 7.1 show that all the statistical tests in NIST

tests suite pass without the application of a postprocessing algorithm.

7.6 Conclusions

We realized a QRNG based on an integrated chip with a Si SPAD and an emitter which

is an array of reversed bias Si p+/n junctions. Studying the EL spectra, we learn about

the different mechanisms through which emission from Si reversed bias avalanche junction
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Figure 7.6: Poisson fit for (a) the dark counts of the SPAD with both the variance and

mean value of ∼1.07 and (b) the output signal of the SPAD illuminated with emitter

with mean and variance of ∼0.96 and 1.13, respectively. Based on the chi-squared (χ2)

statistic, Poisson fit is a good match for SPAD dark counts. However, it does not seem

to be a suitable fit for the obtained data from SPAD and emitter most probably due to

the bunching of the emitted photons from the emitter.

123



Chapter 7. A Robust QRNG Based on an Integrated Chip

-60 -40 -20 0 20 40 60

0.000

0.002

0.004

0.006

0.008

g2  (
)

(ns)

Figure 7.7: The cross-correlogram for the emitter at the applied bias Vemitter = 52V. A

peak is visible in the plot indicating photon bunching and a super-Poissonian distribution

of the detected photons. The plot is not normalized and the error bars for some data

points are visible.
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Figure 7.8: A 2-D 512 × 512 map of the hexadecimal symbols. No particular, periodic

pattern is observable among the symbols.
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Figure 7.9: The probability distribution of the 16 symbols for 1 G symbols. It follows a
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the figure.
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Figure 7.10: JPMF for 1 G generated symbols showing the probability of having each

symbol followed by the other one. There is a very low deviation in the order of ∼ 10−6

from the theoretical value of (1/16)× (1/16) = 0.00390625.
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Figure 7.11: The bit rate of the QRNG based on an integrated chip composed of a

SPAD and an emitter. It increases as the counting rate (detected photons by the SPAD)

increases, reaches a maximum of ∼100 kbps and decreases afterwards due to the growing

number of discards of more than one photon arrivals in “super interval”.

Table 7.1: NIST tests results for 1 G random bits. The significance level is α=0.01. In

order to pass, the p-valueT should be larger than 0.0001 and the proportion should be

more than 0.980.

Statistical test P-valueT Proportion Result

Frequency 0.424453 0.9880 Passed

Block frequency 0.336111 0.9930 Passed

Cumulative sum 0.516113 0.9920 Passed

Runs 0.933472 0.9930 Passed

Longest run 0.686955 0.9910 Passed

Rank 0.075719 0.9940 Passed

FFT 0.715679 0.9880 Passed

Non overlapping template 0.363593 0.9920 Passed

Overlapping template 0.009071 0.9890 Passed

Universal 0.522100 0.9870 Passed

Approximate entropy 0.965083 0.9920 Passed

Random excursions 0.083143 0.9853 Passed

Random excursions variant 0.152493 0.9918 Passed

Serial 0.164425 0.9950 Passed

Linear complexity 0.610070 0.9920 Passed
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occurs. For energies lower that ∼1.7 eV, photon emission is attributed to indirect inter-

band transitions of high field carrier populations. However, for energies ∼1.7-2.2 eV, the

emission is predominantely through indirect intraband (bremsstrahlung) processes. The

direct interband transitions dominate for energies above ∼2.2 eV.

There are several improvements in the QRNG designed and studied in this chapter com-

pared with the QRNG presented in Chapter 5 such as the microscopic size of the integrated

chip (with both the source of entropy and the detector on a single chip), the much higher

signal to noise ratio of ∼1250 (vs. ∼6.88 of Chapter 5) at the maximum bit rate and the

much less dark count contribution of ∼0.0007 (vs. ∼0.5 of Chapter 5 ) in random number

generation.

Even though the detected photons from the emitter do not follow a Poisson distribution,

we see that using our robust methodology introduced in Chapter 4, high quality random

numbers are generated:

• The 2-D visual representation of the generated hexadecimal symbols does not show

any particular, periodic patterns.

• The probability distribution of the symbols is nearly uniform.

• The analysis of the JPMF shows a departure of ∼ 10−6 from the theoretical value

of 1/16× 1/16.

• MI of the generated random symbols is calculated to be ∼ 10−7 bits considering 1G

random symbols.

• The maximum bias is in the order of ∼ 10−5 and the min-entropy is computed ∼
3.999 bits per 4-bits.

• All the statistical tests in NIST tests suite pass for the generated raw data.

The highest bit rate is calculated to be ∼ 100 kbps.
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In this thesis, various systems based on Si that differ in the degree of integration have

been studied. In the first systems, composed of discrete components, two methodologies

based on photon counting and photon arrival time measurements are considered to obtain

a compact and reliable QRNG. We realized a physical QRNG based on Si nanocrystals

(Si-NCs) LED as the source of randomness. Very negligible bias and simple setup are the

chief strengths of our QRNG. With forced dead time of 1 µs and 500 ns, 100 Mbits long

sequences pass the statistical tests of the NIST suite. The highest bit rate achieved is 0.6

Mbps.

Despite the low bit rate, this first simple approach benefits from several advantages: it

uses light to stimulate events in the SPAD and avoids a deterministic post-processing

of the raw data for small datasets. This fact is extremely remarkable in producing high

quality random numbers and compensates for the low bit rate. Furthermore, the approach

proposed here uses simple silicon-based LEDs as the light source and its overall bit rate

can be easily increased by adopting a parallel architecture and exploiting the CMOS com-

patibility of all the components.

However, 1 G bits long datasets fail the main statistical tests in the NIST tests suite.

This failure is attributed to a per mille drift in the electroluminescence (EL) of the Si-

NCs LED that violates the equal probability of ones and zeros. By using post-processing,

the randomness is recovered by the application of the Von Neumann and information-

theoretically secure Toeplitz extractors. The bias and correlation among bits are removed

and all the statistical tests in the NIST tests suite are consequently passed. A number

of parameter control solutions such as stabilizing the temperature, resetting the applied

current to the Si-NCs LED (or equivalently resetting the bin width in the MCS) and

considering a feedback for the system can also be taken into account to overcome the

problem of bias and to generate long, high quality random bit streams.

By the analysis of physical reasons of the failures in the previous approach, we developed

a robust methodology based on photon arrival time measurements to generate quantum

random numbers. The source of entropy is again a Si-NCs LED coupled with a Si SPAD

connected to a field-programmable gate array (FPGA) to extract random numbers. So far

in the literature, timing information of the photon arrivals has been utilized to generate
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random bits through different approaches. However, the lack of a robust methodology

with a complete study of the detector imperfections and a simple setup to generate ran-

dom numbers has been evident. The methodology developed, tested and presented here

masks all the defects of afterpulsing, dead time and jitter of the Si SPAD and is effectively

insensitive to aging of the LED and its emission drifts related to temperature variations.

A simple, integrable setup is used to produce sequences of random numbers.

Analyses of the joint probability mass function (JPMF), mutual information (MI) and

min-entropy show the high quality of generated random numbers and the high efficiency

of the methodology. Despite the variations of the LED emission intensity, the system is

efficient in producing long bit sequences maintaining the high quality of random numbers.

The raw data pass all the statistical tests in NIST tests suite and TestU01 Alphabit bat-

tery without a post processing algorithm. The maximum demonstrated bit rate is 1.68

Mbps with the efficiency of 4-bits per detected photon.

The second QRNG system we studied is based on in-house fabricated LED and detectors.

Specifically, it comprises a Si-NCs LLED and a Si photomultiplier (SiPM) and the ran-

dom bits are generated by using the same methodology based on photon arrival times.

The QRNG is found to be robust in this configuration as well. We set the double length

interval to 1920 ns to mask the afterpulsing and crosstalk distribution of SiPM. The anal-

yses on JPMF, MI and min-entropy show high quality of the generated random numbers.

All the statistical test in the NIST tests suite pass for the raw data. Making up this

configuration, we approached quite well the objective of the Work Package 4 of project

SiQuro.

In the third analyzed system, the degree of integraion was increased. We realized a com-

pact chip comprising a bonded Si-NCs LLED coupled with a cluster of 16 pixels (SPADs)

connected to 4 TDCs to generate random numbers. Based on the characterization of the

SPADs in dark and light conditions, we found out that SPAD8, with the lowest DCR,

would be a good candidate to be used as the detector with TDC1 in order to run the

random mode. Since we saw some missing TDC codes and some periodic oscillations

in the TDC codes distribution due to LSB codes, we just considered the MSB codes of

the TDC. We considered the MSB codes >1 and < 242 in order to approach the nearly

uniform distribution for the probability of MSB codes. Replacing each MSB code with

its corresponding 8-bit binary 0 and 1, we acquired 108 bits and executed the statistical

NIST tests. They failed due to a high bias of ∼0.005. However, after the application of

the information-theoretically secure randomness extractor of Toeplitz function, they all

passed.

Going from 1 SPAD/1 TDC to all SPADs/4 TDCs, the problem with missing codes re-

solves. However, due to some drawback of the TDCs, the effiency of TDC code is not

12 bits per code but ∼11.5 bits per code. The visual representation of the TDC codes

does not show any particular, periodic patterns. The autocorrelation analysis reveals that
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for the first 10 lags the correlation coefficients stay out of the 95% confidence interval.

The correlation is eliminated by ordering the TDC codes based on the pixel address and

concatenate them to produce a sequence of TDC codes.

The data acquisition was very slow and hence for more than 1 TDC configurations obtain-

ing long sequences of codes is really time consuming. The future outlook is to optimize

the data acquisition step in order to speed up the generation of random numbers and

eventually the efficiency of our QRNG.

The final system, which also concludes my thesis work, is based on an integrated chip with

a Si SPAD and an emitter which is an array of reverse-biased Si p+/n junctions. Fitting

the EL intensity versus photon energy curve, photon emission from Si reverse-biased junc-

tion (the emitter in the integrated chip) is attributed to three mechanisms. For energies

lower that ∼1.8 eV, photon emission is due to indirect interband transitions of high field

carrier populations. However, for energies ∼1.8-2.2 eV, the emission is predominantely

through indirect intraband (bremsstrahlung) processes. The direct interband transitions

dominate for energies above ∼2.2 eV.

Even though the detected photons from the emitter do not follow a Poisson distribution,

we see that using our robust methodology introduced in Chapter 4 high quality random

numbers are generated. The highest bit rate is calculated to be ∼ 100 kbps. Despite

the low bit rate, the QRNG designed and studied in this chapter has several advantages

over the QRNG presented in Chapter 5 such as the microscopic size of the integrated

chip (with both the source of entropy and the detector on a single chip), the much higher

signal to noise ratio of ∼1250 (vs. ∼6.88 of Chapter 5) at the maximum bit rate and the

much less dark count contribution of ∼0.0007 (vs. ∼0.5 of Chapter 5 ) in random number

generation.

Throughout this thesis, several configurations have been designed and tested for the gen-

eration of high quality random numbers. Moving from a macroscopic structure with

separated components, coupled and connected to one another, to a microscopic struc-

ture, with both the source of entropy and the detector integrated on a single chip, we

approached well the final goal of Work Package 4 of the project SiQuro which is the mass

production of a small, cheap, high quality, robust and all-Si-based QRNG.

In conclusion, in this work I have reported a step by step development of a Si-based, fully

integrated QRNG. I have described the limitations and the advantages of the proposed

systems, specifically for what concerns the quality of the produced random numbers. The

reduced degree of integration to having a single chip, containing both the source of en-

tropy and the detector, together with robustness and high quality random numbers are

prominent achievements of this thesis work.

The outlook is to parallelize the integrated chip in order to produce and commercialize

the SiQuro USB QRNG able to generate high quality random numbers at reasonably

high bit rate for the applications in cryptography and secure communications. Since the
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availability of cheap means and tools to provide widespread security for all in everyday

communications is absolutely demanding, this QRNG can be also implemented in small

electronic devices to guarantee the “utmost security” for everyone not only for particu-

lar military and political applications which own sensitive, confidential information. The

utmost security has to belong to all at a very low expense affordable by every member of

the societies.
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Appendix A

Gaussian distribution

Gaussian distribution or normal distribution is a continuous probability distribution (of

a normal random variable Z) with the probability density function (pdf) defined as [143]:

f(z;µ, σ2) =
1

σ
√

2π
exp

[
−(z − µ)2

2σ2

]
, |x| <∞, |µ| <∞, σ > 0. (A.1)

The constants µ, σ and σ2 are the mean, standard deviation and variance of the random

variable Z, respectively.

A special case of a normal distribution with µ = 0 and σ = 1 is called the standard normal

distribution with pdf defined as [143]:

φ(z) =
1√
2π

exp (−z
2

2
), |z| <∞ (A.2)

The error function, erf(z), is related to the cumulative distribution function (cdf) of the

standard normal distribution (Φ(z))2 as [143]:

erf(z) = 2Φ(z
√

2)− 1, z ≥ 0, (A.3)

corresponding to a normal pdf with variance 1
2
:

f(z; 0,
1

2
) = (1/

√
π) e−z

2

.

The pdf of a normal distribution is unimodal (with a single mode at which the pdf has

2 Φ(z) and erf(z) are computes as:

Φ(z) =
1√
2π

∫ z

−∞
e−t

2/2 dt erf(z) =
2√
π

∫ z

0

e−t
2

dt
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its maximum value) with mean, median and mode at z = µ and z = 0 for generic and

standard normal distribution, respectively. The normal distribution has a bell-shaped

curve with f(z) and φ(z) to be symmetric about x = µ and z = 0, respectively.
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Poisson distribution

Poisson distribution is a discrete probability distribution for the counts (frequency) of

an event (occurrences of an independent and identically distributed (i.i.d.) random vari-

able) in a fixed interval (e.g. time interval). The probability of observing n number of

occurrences of an i.i.d. random variable in the time interval t0 is expressed as [144]:

P (n) =
e−λt0(λt0)n

n!
, (B.1)

where λ is the average number of occurrences per interval.

The variance and mean of the Poisson distribution are the same and are equal to λ.

Poisson distribution, contrary to the Gaussian distribution, is not symmetric and exhibits

a positive skew which decreases as λ increases. As λ increases, the Poisson distribution

can be approximated by the normal distribution and the pdf (Eq. B.1) becomes more

bell-shaped (like the normal distribution).

The cdf of difference between any random arrival time t0 and the next random arrival

time t1 has an exponential distribution [126]:

P (t1 − t0 ≤ t) = 1− P (t1 − t0 ≥ t) = 1− e−λt, (B.2)

where λ is the number of detected events of the detector. By taking the derivative of the

cdf, the pdf of the difference between any random arrival time t0 and the next random

arrival time t1 is written as:

f(t) = λ e−λt. (B.3)

The Poisson process has the property that if there is only one single arrival in a time

interval [0 , t], the distribution of the arrival times is uniform throughout the interval. This

can be proved by writing the conditional probability and substituting the joint probability

with independent probabilities of one photon detection in (0 , τ ] and no photon detection
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in (τ , t] [126]:

P (T ≤ τ | N(t) = 1) =
P (T ≤ τ,N(t) = 1)

P (N(t) = 1)

=
P (1 event in (0, τ ], 0 event in (τ, t])

P (N(t) = 1)

=
P (1 event in (0, τ ]) P (0 event in (τ, t])

P (N(t) = 1)

=
λτe−λτe−λ(t−τ)

λte−λt
=
τ

t
,

(B.4)

Given N(t) = n, the n arrival times τ1, . . . , τn have the same distribution as the order

statistics corresponding to n independent random variables uniformly distributed on the

interval [0 , t]. Suppose 0 < t1 < t2 < · · · < tn < tn+1 ≡ t and let δi be small enough so

that ti + δi < ti+1, i = 1, 2, . . . , n, we can write the conditional probability as [126]:

P (ti ≤ τi ≤ ti + δi, i = 1, 2, . . . , n | N(t) = n)

=
P (1 event in [ti, ti + δi], i = 1, 2, . . . , n, 0 event elsewhere in [0, t])

P (N(t) = n)

=
λδ1e

−λδ1 . . . λδne
−λδne−λ(t−δ1−δ2−···−δn)

e−λt(λt)n/n!
=
n!

tn
δ1.δ2. . . . .δn

(B.5)

Therefore, dividing the conditional probability by δ1.δ2. . . . .δn and by letting δi → 0,

the conditional density of τ1, τ2, . . . , τn at t1, t2, . . . , tn would be [126]:

fτ1, τ2, ..., τn(t1, t2, . . . , tn | N(t) = n) =
n!

tn
, (B.6)

which is the pdf of the order statistics from a sample size n with the uniform distribution

on [0, t].
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Survival function

Let T be a non-negative random variable representing the waiting time until the occur-

rence of an event. We assume that T has the pdf, f(t) and the cdf, F (t) = P (T < t)

giving the probability that the event has occurred by duration t. The survival function

is the complementary cdf of T written as [145]:

S(t) = P (T ≥ t) = 1− F (t) =

∫ ∞
t

f(z) dz. (C.1)

Which gives the probability of being alive just before duration t (the probability that the

event of interest has not occurred by duration t). Let us define the instantaneous rate

of occurrence of the event (called hazard function) as the conditional probability of the

occurrence of the event in the interval [t, t + dt) given that it has not occurred before,

divided by the width of the interval dt [145]:

λ(t) = lim
dt→0

P (t ≤ T ≤ t+ dt | T ≥ t)

dt

= lim
dt→0

P (t ≤ T ≤ t+ dt and T ≥ t)

P (T ≥ t)
.

1

dt

= lim
dt→0

f(t) dt

S(t)
.

1

dt

=
f(t)

S(t)
,

(C.2)

where the conditional probability in the numerator is replaced by the ratio of the joint

probability that T is in the interval [t, t + dt) and T ≥ t (which is the same as the

probability that t is in the interval), to the probability of the condition T ≥ t. The former
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may be written as f(t) dt for small dt and the latter is S(t) by definition (Eq. C.1). [145]

From Eq. C.1, it is seen that f(t) is the derivative of S(t). Therefore, the hazard function

can be written as:

λ(t) = − d

dt
lnS(t), (C.3)

which can be solved as:

−
∫ t

0

λ(z) dz =

∫ t

0

d lnS(t) = lnS(t)− lnS(0)

→ S(t) = exp {−
∫ t

0

λ(t) dt},

(C.4)

where S(0) = 1 since F (t) = 0 in Eq. C.1. This formula gives the probability of surviving

to duration t as a function of the hazard at all durations up to t. [145]

Assuming a constant rate of occurrence of the event, λ(t) = λ, the survival function is:

S(t) = exp(−λt), (C.5)

which is an exponential distribution with parameter λ. The pdf is obtained multiplying

the survival function by λ: f(t) = λ exp (−λt) and the mean turns out to be 1/λ. [145]
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and Oliver Benson. An ultrafast quantum random number generator with provably

bounded output bias based on photon arrival time measurements. Applied Physics

Letters, 98(17):171105, 2011.

[64] You-Qi Nie, Hong-Fei Zhang, Zhen Zhang, Jian Wang, Xiongfeng Ma, Jun Zhang,

and Jian-Wei Pan. Practical and fast quantum random number generation based

on photon arrival time relative to external reference. Applied Physics Letters,

104(5):051110, 2014.

[65] Abbas Khanmohammadi, Reinhard Enne, Michael Hofbauer, and Horst Zimmer-

manna. A monolithic silicon quantum random number generator based on mea-

surement of photon detection time. IEEE Photonics Journal, 7(5):1–13, 2015.

145



[66] Jian-min Wang, Tian-yu Xie, Hong-fei Zhang, Dong-xu Yang, Chao Xie, and Jian

Wang. A bias-free quantum random number generation using photon arrival time

selectively. Photonics Journal, IEEE, 7(2):1–8, 2015.

[67] Christian Gabriel, Christoffer Wittmann, Denis Sych, Ruifang Dong, Wolfgang

Mauerer, Ulrik L Andersen, Christoph Marquardt, and Gerd Leuchs. A generator

for unique quantum random numbers based on vacuum states. Nature Photonics,

4(10):711–715, 2010.

[68] Thomas Symul, SM Assad, and Ping K Lam. Real time demonstration of high bi-

trate quantum random number generation with coherent laser light. Applied Physics

Letters, 98(23):231103, 2011.

[69] M Jofre, M Curty, F Steinlechner, G Anzolin, JP Torres, MW Mitchell, and

V Pruneri. True random numbers from amplified quantum vacuum. Optics Ex-

press, 19(21):20665–20672, 2011.

[70] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time

series analysis: forecasting and control. John Wiley & Sons, 2015.

[71] Autocorrelation function in matlab. https://it.mathworks.com/help/econ/

autocorr.html#btzjb3t.

[72] https://www.random.org/analysis/.

[73] Geoffrey Grimmett and David Stirzaker. Probability and random processes. Oxford

university press, 2001.

[74] Robert M. Gray. Entropy and information theory. Springer, 2011.
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