173 research outputs found

    Study on 3GPP Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications

    Full text link
    Little research has been done to reliably model millimeter wave (mmWave) path loss in rural macrocell settings, yet, models have been hastily adopted without substantial empirical evidence. This paper studies past rural macrocell (RMa) path loss models and exposes concerns with the current 3rd Generation Partnership Project (3GPP) TR 38.900 (Release 14) RMa path loss models adopted from the International Telecommunications Union - Radiocommunications (ITU-R) Sector. This paper shows how the 3GPP RMa large-scale path loss models were derived for frequencies below 6 GHz, yet they are being asserted for use up to 30 GHz, even though there has not been sufficient work or published data to support their validity at frequencies above 6 GHz or in the mmWave bands. We present the background of the 3GPP RMa path loss models and their use of odd correction factors not suitable for rural scenarios, and show that the multi-frequency close-in free space reference distance (CI) path loss model is more accurate and reliable than current 3GPP and ITU-R RMa models. Using field data and simulations, we introduce a new close-in free space reference distance with height dependent path loss exponent model (CIH), that predicts rural macrocell path loss using an effective path loss exponent that is a function of base station antenna height. This work shows the CI and CIH models can be used from 500 MHz to 100 GHz for rural mmWave coverage and interference analysis, without any discontinuity at 6 GHz as exists in today's 3GPP and ITU-R RMa models.Comment: To be published in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 201

    Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications

    Get PDF
    This paper compares three candidate large-scale propagation path loss models for use over the entire microwave and millimeter-wave (mmWave) radio spectrum: the alpha-beta-gamma (ABG) model, the close-in (CI) free space reference distance model, and the CI model with a frequency-weighted path loss exponent (CIF). Each of these models have been recently studied for use in standards bodies such as 3GPP, and for use in the design of fifth generation (5G) wireless systems in urban macrocell, urban microcell, and indoor office and shopping mall scenarios. Here we compare the accuracy and sensitivity of these models using measured data from 30 propagation measurement datasets from 2 GHz to 73 GHz over distances ranging from 4 m to 1238 m. A series of sensitivity analyses of the three models show that the physically-based two-parameter CI model and three-parameter CIF model offer computational simplicity, have very similar goodness of fit (i.e., the shadow fading standard deviation), exhibit more stable model parameter behavior across frequencies and distances, and yield smaller prediction error in sensitivity testing across distances and frequencies, when compared to the four-parameter ABG model. Results show the CI model with a 1 m close-in reference distance is suitable for outdoor environments, while the CIF model is more appropriate for indoor modeling. The CI and CIF models are easily implemented in existing 3GPP models by making a very subtle modification -- by replacing a floating non-physically based constant with a frequency-dependent constant that represents free space path loss in the first meter of propagation.Comment: Open access available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=743465

    28 GHz NLOS Channel Measurements Revealing Low Path Loss and High Angular Spread in Container Ports

    Full text link
    This paper presents results from a comprehensive measurement campaign conducted at 28 GHz inside a container canyon within a commercial port environment. The measurements are performed at various points inside the container canyon, considering two types of container stacking and two different Transmitter (TX) locations, using a narrowband channel sounder equipped with a rotating horn antenna. The measurements are used to evaluate the azimuthal spectrum and spatial correlation, as well as the impact of a vehicle inside a canyon on these parameters. Further, the measurement data is utilized to validate a simulation setup from which the path loss and the elevation spectrum inside the canyon is obtained. Lastly, a propagation model inside the canyon is hypothesized and shown to be consistent with the measurements. The analysis show a low path loss compared to free space, as well as a high angular spread and short spatial correlation.Comment: 10 pages, 19 figures. Submitted to Transactions on Antennas and Propagatio

    Millimeter-Wave Massive MU-MIMO Performance Analysis for Private Underground Mine Communications

    Get PDF
    In this article, a performance analysis of millimeter wave (mmWave) massive multiuser multiple-input and multiple-output (MU-MIMO) channel within an underground mine is performed. The analysis is based on channel measurements conducted at 28 GHz using a base station of 64 virtual antenna elements serving multiple users. Channel characteristics such as large-scale path loss, time dispersion, coherence bandwidth and sum-rate capacity are reported and evaluated. The results indicate that multislope path loss model is better suited for precise prediction of path loss across various propagation segments within the mining gallery. The time dispersion analysis reveals that the underground mine channel does not cause significant time dispersion, as 90% of the root-mean-square (rms) delay spreads are below 4 ns. In addition, it was found that the rms delay spread is not dependent on the propagation distance. The study on sum-rate capacity highlights the potential of employing massive MIMO technology to improve the channel’s spectral efficiency. The analysis reveals that the capacity, with eight active users, can reach up to 33.54 bit/s/Hz. The outcomes of this article offer valuable insights into the propagation properties of underground mine environment, which is characterized by rich-scattering and irregular topology

    Mobile Radio Channel Measurements for air-to-ground and non-conventional future applications

    Get PDF
    La tesi si suddivide in quattro parti: due iniziali di tipo compilativo e le altre due sperimentali. Nella prima parte vengono descritti gli UAVs: classificazioni e applicazioni da un punto di vista delle telecomunicazioni e della sicurezza; una seconda parte sempre compilativa, espone invece una panoramica sulle caratteristiche del canale Air-to-Ground e la possibilità di modelling attraverso diversi scenari. La terza parte rappresenta il corpo della tesi, in quanto presenta la descrizione di una campagna di misure condotta in ambiente industriale, fatta con due diversi setup di misure: onde mm e UWB. Dopo la presentazione dello scopo, vengono poi trattati gli esperimenti, descritto l'equipment ed estratte le conclusioni mostrando funzioni come il Power Angle Profile e la Risposta Impulsiva. L'ultimo capitolo tratta infine di una campagna da condurre in ambiente urbano, presentando però solo il piano di misure, in quanto i risultati saranno a breve disponibili

    Directive mmWave radio channel modeling in a ship hull

    Get PDF
    Wireless connectivity has been realized for multiple environments and different frequency bands. However, little research exists about mmWave communication in industrial environments. This paper presents the 60 GHz double-directional radio channel for mmWave communication in a ship hull for Line-of-Sight (LOS) and non-Line-of-Sight (NLOS) conditions. We performed channel measurements using the Terragraph channel sounder at different locations in the ship hull and fitted LOS path loss to a one-slope path loss model. Path loss and root-mean-square delay spread of the LOS path is compared to the reflected path with lowest path loss. NLOS communication via this first-order reflected path is modeled by calculating the path distance and determining the reflection loss. The reflection losses have a considerable contribution to the signal attenuation of the reflected path. The channel models are implemented in an indoor coverage prediction tool, which was extended with a ray launching algorithm and validated by comparison with an analytical electromagnetic solver. The results show that the mmWave radio channel allows high-throughput communication within a ship hull compartment, even when no LOS path between the transmitter and receiver is present.This work was executed within the Internet-of-Shipping (IoS) research project, co-financed by imec with support from Flanders Innovation & Entrepreneurship. The channel sounder has been granted as part of the Channel Sounder Program of the Telecom Infra Project (TIP). The authors would like to thank Ivan Renette and Franck Ntibashirakandi from Exmar Shipmanagement to facilitate the measurement campaign.Peer ReviewedPostprint (author's final draft
    • …
    corecore