457 research outputs found

    Priority-Oriented Adaptive Control With QoS Guarantee for Wireless LANs.

    Get PDF
    In today’s wireless networks there is a great need for QoS, because of the time-bounded voice, audio and video traffic. A new QoS enhanced standard is being standardized by the IEEE 802.11e workgroup. It uses a contention free access mechanism called Hybrid Control Channel Access (HCCA) to guarantee QoS. However, HCCA is not efficient for all types of time-bounded traffic. This work proposes an alternative protocol which could be adapted in HCF (Hybrid Coordination Function). The Priority Oriented Adaptive Control with QoS Guarantee (POAC-QG) is a complete centralized channel access mechanism, it is able to guarantee QoS for all types of multimedia network applications, it enhances the parameterized traffic with priorities, and it supports time division access using slots. Furthermore, it instantly negotiates the quality levels of the traffic streams according to their priorities, supporting multiple streams to the best quality it can achieve. POAC-QG compared to HCCA, provides higher channel utilization, adapts better to the characteristics of the different traffic types, differentiates the traffic streams more efficiently using priorities, and generally exhibits superior performance

    Adaptive Control in Wireless Networks

    Get PDF

    QAP: A QoS supportive adaptive polling protocol for wireless LANs

    Get PDF
    A QoS supportive adaptive polling (QAP) protocol for wireless LANs is introduced. QAP operates under an infrastructure wireless LAN, where an access point (AP) polls the wireless nodes in order to grant them permission to transmit. The polled node sends data directly to the destination node. We consider bursty traffic conditions, under which the protocol operates efficiently. The polling scheme is based on an adaptive algorithm according to which it is most likely that an active node is polled. Also, QAP takes into account packet priorities, so it supports QoS by means of the Highest Priority First packet buffer discipline and the priority distinctive polling scheme. Lastly, the protocol combines efficiency and fairness, since it prohibits a single node to dominate the medium permanently. QAP is compared to the efficient learning automata-based polling (LEAP) protocol, and is shown to have superior performance. Š 2005 Elsevier B.V. All rights reserved

    Preliminary study of cooperation in hybrid ad-hoc networks

    Get PDF
    In this paper, we present a first approach to evolve a cooperative behavior in ad hoc networks. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios are unfavorable to the interests of a user. In this paper we deal with the issue of user cooperation in ad hoc networks by developing the algorithm called Generous Tit-For-Tat. We assume that nodes are rational, i.e., their actions are strictly determined by self-interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we study the added behavior of the network.En este proyecto mostramos un primer acercamiento a la evolución de las redes Ad-Hoc cooperativas. Puesto que los nodos wireless disponen de energía finita, puede que no estÊn interesados en aceptar transmitir tråfico de otros nodos. Por otra parte, si ningún nodo decide gastar energía en retransmitir tråfico de otros, entonces la tasa de transferencia en la red cae críticamente. Estos casos extremos son desfavorables para el usuario. En este trabajo tratamos estas cuestiones gracias al desarrollo de un algoritmo llamado "Generous Tit-For Tat". Asumiremos que los nodos son egoístas y tienen energía finita, así que las decisiones se determinarån por propio interÊs y cada nodo serå asociado con un tiempo limitado de energía. Dadas esas limitaciones y la suposición del comportamiento racional estudiaremos el comportamiento agregado de la red.En aquest treball mostrem una primera aproximació a l'evolució de les xarxes Ad-Hoc cooperatives. Donat que els nodes wireless disposen d'energia finita, poden no estar interessats en transmetre tràfic d'altres nodes. Per altra banda, si cap node decideix gastar energia en passar tràfic d'altres, llavors la tassa de transferència a la xarxa cau críticament. Aquests casos extrems son desfavorables per l'usuari. En aquest treball tractem aquestes qßestions gràcies al desenvolupament d'un algoritme anomenat "Generous Tit-For-Tat". Assumirem que els nodes son egoistes y tenen energia finita, així que les decisions es determinaran pel seu propi interès i cada node s'associarà amb un temps limitat d'energia. Donades aquestes limitacions y la suposició del comportament racional, estudiarem el comportament agregat de la xarxa.Nota: Aquest document contÊ originàriament altre material i/o programari nomÊs consultable a la Biblioteca de Ciència i Tecnologia

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Medium access control design for all-IP and ad hoc wireless network

    Get PDF
    Medium Access Control (MAC) protocol in a wireless network controls the access of wireless medium by mobile terminals, in order to achieve its fair and efficient sharing. It plays an important role in resource management and QoS support for applications. All-IP wireless WAN is fully IP protocol-based and it is a strong candidate beyond 3G (Third Generation Wireless Network). Ad hoc wireless network has recently been the topic of extensive research due to its ability to work properly without fixed infrastructure. This dissertation is composed of two main parts. The first part pursues a Prioritized Parallel Transmission MAC (PPTM) design for All-IP Wireless WAN. Two stages are used and each packet is with a priority level in PPTM. In stage 1, a pretransmission probability is calculated according to the continuous observation of the channel load for a certain period of time. In stage 2, a packet is prioritized and transmitted accordingly. It is modeled and analyzed as a nonpreemptive Head-Of-the-Line prioritized queueing system with Poisson arrival traffic pattern. Its performance is analyzed under three other traffic patterns, which are Constant Bit Rate, Exponential On/Off, and Pareto On/Off, by using a NS-2 simulator, and compared with that of Modified Channel Load Sensing Protocol. PPTM supports dynamic spread code allocation mechanism. A mobile terminal can apply for a spreading code according to the current channel condition. To use the idea of dynamic bandwidth allocation in PPTM for adhoc wireless network, a Dynamic-Rate-with-Collision-Avoidance (DRCA) MAC protocol is proposed in the second part of the dissertation. DRCA is based on spread spectrum technology. In DRCA, a terminal sets the spreading factor for a packet according to the activity level of neighboring nodes. If the total number of usable spreading codes with this spreading factor is less than the total number of mobile terminals in the network, to avoid collision, the spreading code id is broadcast such that other terminals can avoid using it when the packet is being transmitted. The performance of DRCA is theoretically analyzed in a slotted, single-hop, multi-user environment. To evaluate DRCA\u27s performance in an environment closed to a real one, a simulator that supports multi-hop, random mobility pattern is created with OPNET. Both theoretical and simulation results show that DRCA outperforms MACA/CT (Multiple Access with Collision Avoidance with Common Transmitter-based) in case if there are more than one communication pair and the ratio of inactive mobile terminals to active ones is high
    • …
    corecore