664 research outputs found

    User-Friendly Parallel Computations with Econometric Examples

    Get PDF
    This paper shows how a high level matrix programming language may be used to perform Monte Carlo simulation, bootstrapping, estimation by maximum likelihood and GMM, and kernel regression in parallel on symmetric multiprocessor computers or clusters of workstations. The implementation of parallelization is done in a way such that an investigator may use the programs without any knowledge of parallel programming. A bootable CD that allows rapid creation of a cluster for parallel computing is introduced. Examples show that parallelization can lead to important reductions in computational time. Detailed discussion of how the Monte Carlo problem was parallelized is included as an example for learning to write parallel programs for Octave.parallel computing, Monte Carlo, bootstrapping,maximum likelihood, GMM, kernel regression

    Design and implementation of Java bindings in Open MPI

    Full text link
    This paper describes the Java MPI bindings that have been included in the Open MPI distribution. Open MPI is one of the most popular implementations of MPI, the Message-Passing Interface, which is the predominant programming paradigm for parallel applications on distributed memory computers. We have added Java support to Open MPI, exposing MPI functionality to Java programmers. Our approach is based on the Java Native Interface, and has similarities with previous efforts, as well as important differences. This paper serves as a reference for the application program interface, and in addition we provide details of the internal implementation to justify some of the design decisions. We also show some results to assess the performance of the bindings. (C) 2016 Elsevier B.V. All rights reserved.We are indebted to Siegmar Grog for his exhaustive testing of the Java bindings. We also thank Ralph Castain for helping in the integration of the Java bindings in the Open MPI infrastructure. The NPB-MPJ benchmarks used in Section 5 were kindly provided by Guillermo Lopez Taboada. The first two authors were supported by the Spanish Ministry of Economy and Competitiveness under project number TIN2013-41049-P.Vega Gisbert, O.; Román Moltó, JE.; Squyres, JM. (2016). Design and implementation of Java bindings in Open MPI. Parallel Computing. 59:1-20. https://doi.org/10.1016/j.parco.2016.08.004S1205

    Acceleration of a Full-scale Industrial CFD Application with OP2

    Get PDF

    Parallel containers: a tool for applying parallel computing applications on clusters

    Get PDF
    Parallel and cluster computing remain somewhat difficult to apply quickly for many applications domains. Recent developments in computer libraries such as the Standard Template Library of the C++ language and the Message Passing Package associated with the Python Language provide a way to implement very high level parallel containers in support of application programming. A parallel container is an implementation of a data structure such as a list, or vector, or set, that has associated with it the necessary methods and state knowledge to distribute the contents of the structure across the memory of a parallel computer or a computer cluster. A key idea is that of the parallel iterator which allows a single high level statement written by the applications programmer to invoke a parallel operation across the entire data structure’s contents while avoiding the need for knowledge of how the distribution is actually carried out. This transparency approach means that optimised parallel algorithms can be separated from the applications domain code, maximising reuse of the parallel computing infrastructure and libraries. This paper describes our initial experiments with C++ parallel containers

    Performance analysis of parallel Python applications

    Get PDF
    Python is progressively consolidating itself within the HPC community with its simple syntax, large standard library, and powerful third-party libraries for scientific computing that are especially attractive to domain scientists. Despite Python lowering the bar for accessing parallel computing, utilizing the capacities of HPC systems efficiently remains a challenging task, after all. Yet, at the moment only few supporting tools exist and provide merely basic information in the form of summarized profile data. In this paper, we present our efforts in developing event-based tracing support for Python within the performance monitor Extrae to provide detailed information and enable a profound performance analysis. We present concepts to record the complete communication behavior as well as to capture entry and exit of functions in Python to provide the according application context. We evaluate our implementation in Extrae by analyzing the well-established electronic structure simulation package GPAW and demonstrate that the recorded traces provide equivalent information as for traditional C or Fortran applications and, therefore, offering the same profound analysis capabilities now for Python, as well.Peer ReviewedPostprint (published version

    MPI Application Binary Interface Standardization

    Full text link
    MPI is the most widely used interface for high-performance computing (HPC) workloads. Its success lies in its embrace of libraries and ability to evolve while maintaining backward compatibility for older codes, enabling them to run on new architectures for many years. In this paper, we propose a new level of MPI compatibility: a standard Application Binary Interface (ABI). We review the history of MPI implementation ABIs, identify the constraints from the MPI standard and ISO C, and summarize recent efforts to develop a standard ABI for MPI. We provide the current proposal from the MPI Forum's ABI working group, which has been prototyped both within MPICH and as an independent abstraction layer called Mukautuva. We also list several use cases that would benefit from the definition of an ABI while outlining the remaining constraints

    Multilingual interfaces for parallel coupling in multiphysics and multiscale systems

    Get PDF
    Multiphysics and multiscale simulation systems are emerging as a new grand challenge in computational science, largely because of increased computing power provided by the distributed-memory parallel programming model on commodity clusters. These system
    • …
    corecore