
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 2171–2179

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.203

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,  
Zurich, Switzerland

10.1016/j.procs.2017.05.203 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

Performance Analysis of Parallel Python Applications

Michael Wagner1, Germán Llort1,2, Estanislao Mercadal1,2, Judit Giménez1,2,
and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
michael.wagner@bsc.es

2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Abstract
Python is progressively consolidating itself within the HPC community with its simple syntax,
large standard library, and powerful third-party libraries for scientific computing that are es-
pecially attractive to domain scientists. Despite Python lowering the bar for accessing parallel
computing, utilizing the capacities of HPC systems efficiently remains a challenging task, after
all. Yet, at the moment only few supporting tools exist and provide merely basic information in
the form of summarized profile data. In this paper, we present our efforts in developing event-
based tracing support for Python within the performance monitor Extrae to provide detailed
information and enable a profound performance analysis. We present concepts to record the
complete communication behavior as well as to capture entry and exit of functions in Python
to provide the according application context. We evaluate our implementation in Extrae by
analyzing the well-established electronic structure simulation package GPAW and demonstrate
that the recorded traces provide equivalent information as for traditional C or Fortran applica-
tions and, therefore, offering the same profound analysis capabilities now for Python, as well.

Keywords: Performance Analysis, Tracing, Tools, HPC, Parallel, Python, Extrae, Paraver

1 Introduction

While the HPC landscape of programming languages is essentially monopolized by Fortran
and C, other programming languages that are popular outside the HPC community are striv-
ing to gain ground. Python is a widely-used, high-level programming language with the self-
proclaimed goal to allow fast and easy program development. Among others, it features are
a simple syntax, dynamic data types, powerful data structures and a large standard library.
Combined with third party libraries for scientific computing, such as NumPy [16] and SciPy
[14], it is well comprehensible that Python is especially attractive to domain scientists.

For parallel computing with Python exist, among others, packages from the Python standard
library like the multiprocessing module and external Python interfaces to parallel runtimes

1

This space is reserved for the Procedia header, do not use it

Performance Analysis of Parallel Python Applications

Michael Wagner1, Germán Llort1,2, Estanislao Mercadal1,2, Judit Giménez1,2,
and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
michael.wagner@bsc.es

2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Abstract
Python is progressively consolidating itself within the HPC community with its simple syntax,
large standard library, and powerful third-party libraries for scientific computing that are es-
pecially attractive to domain scientists. Despite Python lowering the bar for accessing parallel
computing, utilizing the capacities of HPC systems efficiently remains a challenging task, after
all. Yet, at the moment only few supporting tools exist and provide merely basic information in
the form of summarized profile data. In this paper, we present our efforts in developing event-
based tracing support for Python within the performance monitor Extrae to provide detailed
information and enable a profound performance analysis. We present concepts to record the
complete communication behavior as well as to capture entry and exit of functions in Python
to provide the according application context. We evaluate our implementation in Extrae by
analyzing the well-established electronic structure simulation package GPAW and demonstrate
that the recorded traces provide equivalent information as for traditional C or Fortran applica-
tions and, therefore, offering the same profound analysis capabilities now for Python, as well.

Keywords: Performance Analysis, Tracing, Tools, HPC, Parallel, Python, Extrae, Paraver

1 Introduction

While the HPC landscape of programming languages is essentially monopolized by Fortran
and C, other programming languages that are popular outside the HPC community are striv-
ing to gain ground. Python is a widely-used, high-level programming language with the self-
proclaimed goal to allow fast and easy program development. Among others, it features are
a simple syntax, dynamic data types, powerful data structures and a large standard library.
Combined with third party libraries for scientific computing, such as NumPy [16] and SciPy
[14], it is well comprehensible that Python is especially attractive to domain scientists.

For parallel computing with Python exist, among others, packages from the Python standard
library like the multiprocessing module and external Python interfaces to parallel runtimes

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.203&domain=pdf


2172 Michael Wagner et al. / Procedia Computer Science 108C (2017) 2171–2179Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

like MPI4Py [9] for message passing. MPI4Py provides bindings of MPI [12] with an object-
oriented interface similar to C++ and allows the communication of arbitrary Python objects.
In addition, MPI4Py supports optimized communication of NumPy arrays with a speed close
to that of communication directly in C or Fortran.

Combining the benefits of Python (e.g. fast development and high-level algorithms) with
an implementation of performance critical parts in C (e.g. main numerical kernels with BLAS,
LAPACK, NumPy; and MPI communication with MPI4Py) has been the most successful ap-
proach in HPC computing, so far. For instance, GPAW [10] has demonstrated about 25% peak
performance and good scaling up to tens of thousands of cores [11].

Despite the fact that Python is consolidating itself more and more in the HPC world, suit-
able tool support is still scarce. Currently, for the purpose of performance analysis there exists
some basic profiling support in the form of summarized function-level or line-level timing infor-
mation provided, for instance, by the Python modules profile and cProfile [6]. However, more
advanced tool support, such as event-based tracing, is still missing. In contrast to summarized
profiling, event-based tracing records runtime events, such as entering/leaving a function or
communication operations, individually. As a result, while profiles may lack crucial informa-
tion and hide dynamically occurring effects, event-based tracing allows capturing the dynamic
interaction between thousands of concurrent processing elements and enables the identifica-
tion of outliers from the regular behavior. Thus, event-based tracing allows a more detailed
and profound analysis and assists developers not only in identifying performance issues within
their applications but also in understanding their behavior on the complex and increasingly
heterogeneous HPC systems.

In this paper, we share our efforts in developing event-based tracing support for Python
within the performance monitor Extrae [2]. Our contributions in this work are, first, concepts
to capture entry and exit of functions in Python; second, a method to record the complete
communication behavior for Python applications using either MPI4Py or custom MPI bindings;
and, third, we demonstrate the capabilities of our prototype implementation with GPAW [10, 4],
a well-establish software package for electronic structure simulations, which is implemented in
Python and C and massively parallelized with MPI.

The remainder of the paper is structured as followed. In Section 2 we introduce related
research and distinguish our work. In Section 3 we highlight the concepts and implementa-
tion to record function entry/exit and communication events. In Section 4 we evaluate our
current implementation and show its capabilities for a performance analysis of parallel Python
applications. Finally, we conclude our work in Section 5.

2 Related Work

The most commonly used method to generate basic summarized information are the Python
modules profile and cProfile in combination with pstats [6]. Profile and cProfile provide statis-
tics for accumulated duration and number of invocations for various parts of the program. Both
export the same information and are mostly interchangeable; with the main difference being
that cProfile is a C extension with less overhead but also less compatibility. A function can
be profiled by calling cProfile.run(<function>) instead of <function> within any Python
script that imports the profiling module. CProfile can also be invoked as a script to profile
another script by adding -m cProfile to the Python command. The generated statistics can
be formatted into simple text reports via the pstats module. In a parallel execution, the output
is generated for each process and the output is intermingled, which requires some additional
post-processing to provide meaningful results.

2

Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

The TAU performance system allows to profile a parallel Python application and produces a
similar results to cProfile but with a GUI representation [11]. Additionally, the authors discuss
some further problems that arise for running and profiling parallel Python applications, e.g., the
fact that each module is imported redundantly for each process creating a remarkable overhead
in the start-up time. Unfortunately, the authors only mention the use of TAU without details
on how the performance information was collected.

Next to these, the commercial tools Allinea MAP [8] and Intel’s Vtune [13] support mixed
Python and C/Fortran applications. Allinea MAP provides basic system information over time,
e.g., CPU and memory utilization; which can be accessed without specific support for Python.
Intel VTune’s summarized information is based on periodic sampling for mixed Python and
C/Fortran applications but they mention some limitations in accuracy and the collection of
Python data. Nevertheless, we were unable to locate further details on the available Python
support for these tools at the moment of writing this work.

All the above mentioned tools have in common that they provide basic summarized profiling
information. In contrast, we present an event-based tracing approach that allows a detailed
and profound analysis, in particular, of the parallel behavior and inter-process dependencies.
In addition, we describe the methods to acquire the performance data, which is missing in
previous works. Furthermore, we evaluate and discuss the analysis capabilities for a well-known,
massively parallel application. To the best of our knowledge, this has not been previously done.

3 Implementation

In this section we discuss the extensions developed for the Extrae instrumentation package [2]
to support event-based tracing of function entry/exit and communication events for Python.
Extrae is an open-source tracing framework that provides instrumentation and sampling mech-
anisms to collect performance measurements from the most common parallel programming
models automatically (e.g. MPI, OpenMP, POSIX threads, etc.). The information captured by
Extrae typically includes the activity of the parallel runtime (e.g. message exchanges in MPI),
as well as performance counters and call-stack information to correlate the measurements with
the actual source code. Furthermore it is possible to manually or automatically instrument
source code functions. Likewise, the two main targets for event-based monitoring of Python
applications is, first, to capture the calls to the parallel runtime and, second, to provide the
according source code context.

3.1 Instrumentation of MPI

Event-based tracing for conventional (C or Fortran) MPI applications is a well-known technique
supported by most performance analysis tools. The most common approach relies on the MPI
standard profiling interface (PMPI) [12]. Each MPI function can be called with an MPI or
PMPI prefix, which allows the tools to intercept the program’s calls to MPI by rewriting the
functions with the MPI prefix. The new functions can capture performance data and then
perform the according message-passing operation by calling the associated PMPI function.

A convenient method for the function replacement is bundling all the new wrapper functions
together in a shared library to be loaded at runtime. This enables replacing the MPI calls from
a dynamically linked binary without having access to the source code nor having to relink.
This can be primarily effected by setting the LD PRELOAD environment variable to the path
of the shared object that redefines the MPI symbols. This library will be loaded before any
other library, replacing in turn the original implementation from the MPI runtime. Overriding

3



 Michael Wagner et al. / Procedia Computer Science 108C (2017) 2171–2179 2173Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

like MPI4Py [9] for message passing. MPI4Py provides bindings of MPI [12] with an object-
oriented interface similar to C++ and allows the communication of arbitrary Python objects.
In addition, MPI4Py supports optimized communication of NumPy arrays with a speed close
to that of communication directly in C or Fortran.

Combining the benefits of Python (e.g. fast development and high-level algorithms) with
an implementation of performance critical parts in C (e.g. main numerical kernels with BLAS,
LAPACK, NumPy; and MPI communication with MPI4Py) has been the most successful ap-
proach in HPC computing, so far. For instance, GPAW [10] has demonstrated about 25% peak
performance and good scaling up to tens of thousands of cores [11].

Despite the fact that Python is consolidating itself more and more in the HPC world, suit-
able tool support is still scarce. Currently, for the purpose of performance analysis there exists
some basic profiling support in the form of summarized function-level or line-level timing infor-
mation provided, for instance, by the Python modules profile and cProfile [6]. However, more
advanced tool support, such as event-based tracing, is still missing. In contrast to summarized
profiling, event-based tracing records runtime events, such as entering/leaving a function or
communication operations, individually. As a result, while profiles may lack crucial informa-
tion and hide dynamically occurring effects, event-based tracing allows capturing the dynamic
interaction between thousands of concurrent processing elements and enables the identifica-
tion of outliers from the regular behavior. Thus, event-based tracing allows a more detailed
and profound analysis and assists developers not only in identifying performance issues within
their applications but also in understanding their behavior on the complex and increasingly
heterogeneous HPC systems.

In this paper, we share our efforts in developing event-based tracing support for Python
within the performance monitor Extrae [2]. Our contributions in this work are, first, concepts
to capture entry and exit of functions in Python; second, a method to record the complete
communication behavior for Python applications using either MPI4Py or custom MPI bindings;
and, third, we demonstrate the capabilities of our prototype implementation with GPAW [10, 4],
a well-establish software package for electronic structure simulations, which is implemented in
Python and C and massively parallelized with MPI.

The remainder of the paper is structured as followed. In Section 2 we introduce related
research and distinguish our work. In Section 3 we highlight the concepts and implementa-
tion to record function entry/exit and communication events. In Section 4 we evaluate our
current implementation and show its capabilities for a performance analysis of parallel Python
applications. Finally, we conclude our work in Section 5.

2 Related Work

The most commonly used method to generate basic summarized information are the Python
modules profile and cProfile in combination with pstats [6]. Profile and cProfile provide statis-
tics for accumulated duration and number of invocations for various parts of the program. Both
export the same information and are mostly interchangeable; with the main difference being
that cProfile is a C extension with less overhead but also less compatibility. A function can
be profiled by calling cProfile.run(<function>) instead of <function> within any Python
script that imports the profiling module. CProfile can also be invoked as a script to profile
another script by adding -m cProfile to the Python command. The generated statistics can
be formatted into simple text reports via the pstats module. In a parallel execution, the output
is generated for each process and the output is intermingled, which requires some additional
post-processing to provide meaningful results.

2

Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

The TAU performance system allows to profile a parallel Python application and produces a
similar results to cProfile but with a GUI representation [11]. Additionally, the authors discuss
some further problems that arise for running and profiling parallel Python applications, e.g., the
fact that each module is imported redundantly for each process creating a remarkable overhead
in the start-up time. Unfortunately, the authors only mention the use of TAU without details
on how the performance information was collected.

Next to these, the commercial tools Allinea MAP [8] and Intel’s Vtune [13] support mixed
Python and C/Fortran applications. Allinea MAP provides basic system information over time,
e.g., CPU and memory utilization; which can be accessed without specific support for Python.
Intel VTune’s summarized information is based on periodic sampling for mixed Python and
C/Fortran applications but they mention some limitations in accuracy and the collection of
Python data. Nevertheless, we were unable to locate further details on the available Python
support for these tools at the moment of writing this work.

All the above mentioned tools have in common that they provide basic summarized profiling
information. In contrast, we present an event-based tracing approach that allows a detailed
and profound analysis, in particular, of the parallel behavior and inter-process dependencies.
In addition, we describe the methods to acquire the performance data, which is missing in
previous works. Furthermore, we evaluate and discuss the analysis capabilities for a well-known,
massively parallel application. To the best of our knowledge, this has not been previously done.

3 Implementation

In this section we discuss the extensions developed for the Extrae instrumentation package [2]
to support event-based tracing of function entry/exit and communication events for Python.
Extrae is an open-source tracing framework that provides instrumentation and sampling mech-
anisms to collect performance measurements from the most common parallel programming
models automatically (e.g. MPI, OpenMP, POSIX threads, etc.). The information captured by
Extrae typically includes the activity of the parallel runtime (e.g. message exchanges in MPI),
as well as performance counters and call-stack information to correlate the measurements with
the actual source code. Furthermore it is possible to manually or automatically instrument
source code functions. Likewise, the two main targets for event-based monitoring of Python
applications is, first, to capture the calls to the parallel runtime and, second, to provide the
according source code context.

3.1 Instrumentation of MPI

Event-based tracing for conventional (C or Fortran) MPI applications is a well-known technique
supported by most performance analysis tools. The most common approach relies on the MPI
standard profiling interface (PMPI) [12]. Each MPI function can be called with an MPI or
PMPI prefix, which allows the tools to intercept the program’s calls to MPI by rewriting the
functions with the MPI prefix. The new functions can capture performance data and then
perform the according message-passing operation by calling the associated PMPI function.

A convenient method for the function replacement is bundling all the new wrapper functions
together in a shared library to be loaded at runtime. This enables replacing the MPI calls from
a dynamically linked binary without having access to the source code nor having to relink.
This can be primarily effected by setting the LD PRELOAD environment variable to the path
of the shared object that redefines the MPI symbols. This library will be loaded before any
other library, replacing in turn the original implementation from the MPI runtime. Overriding

3



2174 Michael Wagner et al. / Procedia Computer Science 108C (2017) 2171–2179Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

standard library’s functions with your own version of these functions through the LD PRELOAD

environment variable is supported in most UNIX systems, which makes it a method of choice to
perform symbol substitutions transparently. Moreover, it allows tracing of MPI from Python
programs out-of-the-box since MPI-for-Python packages like MPI4Py [9] provide C-bindings of
the MPI standard to an external shared object that can be dynamically interposed.

This enables to capture entry and exit of MPI calls in Python scripts or mixed Python +
C/Fortran scenarios in an analogous manner as for pure C or Fortran codes along with typical
performance characteristics. However, pure MPI instrumentation provides only limited infor-
mation due to the lack of application context. Therefore, the second target is to complement
the MPI information with source code instrumentation.

3.2 Instrumentation of Source Code Context

A common approach for tools to provide application context is to store the native call-stack (or
parts of it) to attribute the performance to the source code. However, this approach can not
be applied in the context of an interpreted execution, as backtraces of the native call-stack do
not refer to the actual script’s execution flow but to the interpreter’s parsing process. Another
possibility to add context to the trace is to instrument the (main) functions of the program.
There are many approaches to this problem, ranging from source-to-source compilers, auto-
matic compiler instrumentation with -finstrument-functions, binary rewriting or dynamic
injection of monitoring probes. Yet again, these methods can not be applied on interpreted
executions as the target program is not the actual script but the Python interpreter.

In order to support tracing of function entry/exit in Python we rely on the sys module.
This module provides access to some variables used or maintained by the interpreter and to
functions that interact strongly with the interpreter, including profiling capabilities [5]. The
sys.setprofile method allows to implement a Python source code profiler within Python by
setting a callback routine that is invoked on call and return events of the scripts’ functions. It
receives three arguments: frame, event and arg, which identify, respectively, the current stack
frame, whether it is an entry or exit event, and additional arguments. This enables keeping
track of the functions called within the script, and store the activity in the trace.

Next to that, in a mixed Python + C/Fortran execution it is furthermore possible to record
the source code context from the C/Fortran parts via already existing means, e.g. store the
calling context of MPI calls via stack unwinding methods.

3.3 The Extrae Python Module

To support capturing MPI events, user functions, and both combined we developed a new
Python module that can be directly imported into the user’s Python script. This module
conveniently bundles the three main requirements to facilitate the trace recording. First, it
provides dynamic interposition of the tracing library based on ctypes. Ctypes is a foreign
function library for Python that provides C compatible data types and allows calling functions
in shared libraries [1]. Ctypes exports the cdll object for loading dynamic link libraries,
which allows hooking a tracing library through the cdll.LoadLibrary method, with an effect
comparable to pre-loading the library into a binary executable. With this we can load the
Extrae library that intercepts the MPI library to capture the calls to this runtime.

Second, it activates the Python profiler to track the user functions that are called, allowing
to selectively record a subset of the functions during the execution of the Python script. This
way, the Extrae Python module enables monitoring the function calls without any source code
modification by simply providing a list of function names in a plain text file.

4

Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

Third, it provides an interface that allows to pass information from the Python profiler
to the tracing library. We rely on Extrae’s API to emit punctual, user-defined events in the
trace (i.e. Extrae event method). We developed bindings that make the API calls available
in Python, which are called from within the profiler callback to store function entry and exit
events. This way, we can provide user function information to complement MPI communication
activity with the application context. In addition, the interface allows manual instrumentation
of further user events, e.g. iterations, phases, or execution states.

3.4 Other Usage Scenarios

While MPI-for-Python packages are widely used to develop parallel codes, this is not the only
approach. It is also very frequent to use the multiprocessing package, which supports spawning
processes and offers local and remote concurrency. Tracing of Python programs based on
multiprocessing’s Process module is also supported through the mechanisms explained above.
We use the system profiler to track the spawning of processes started from the multiprocessing
module. Whenever we detect calls to a subprocess with a new process ID (i.e. PID), we
interpose the tracing library on the new process through cdll. This way, we can record the
process’ life-span by emitting events through the Extrae API. The support for programs using
multiprocessing’s Pool module is currently still under development. Finally, serial executions
are seamlessly supported through Extrae’s python module by transparently loading the tracing
library and recording of function calls and user-defined punctual events.

4 Evaluation

In this section we evaluate the new Python support with the well-established software package
for electronic structure simulations GPAW [10, 4]. GPAW is implemented in Python and C
and is parallelized with MPI. We consider this a well-suited example since it has demonstrated
about 25% peak performance and good scaling up to tens of thousands of cores [11].

We recorded a basic example from the manual [3] of a calculation for a single H2 molecule
using a supercell of size 6.0 × 6.0 × 6.0 Å, i.e., 32 × 32 × 32 grid points. We used GPAW
in version 1.1.0 with Python 2.7 running in MareNostrum [7], an HPC system at Barcelona
Supercomputing Center (BSC) based on Intel SandyBridge processors. For the recording we
used Extrae 3.4.3 [2] that adds the Python support.

Ahead of the actual measurement run, we execute the script with the profile module enabled
to get an overview of the most common Python functions in the script. Out of these we select
the functions with the longest accumulated duration. The list with the function names is passed
to Extrae, which intercepts the entry/exit of the functions to add them to the trace.

During the recording we also tracked the additional overhead that is introduced by the trace
recording. For this measurement we observed a total overhead of about 5%. Obviously, the
overhead depends strongly on the granularity of the recorded functions. For the instrumentation
of function calls we found an average overhead 4.6 us per entry/exit event, i.e. 9.2 us per
function call. This overhead can be broken down in 2.4 us originating from the Python profiler,
2.0 us for the collection of eight hardware performance counters from PAPI, and 0.2 us for the
tracing library. Recording MPI events shows equivalent costs regarding the access to hardware
performance counters and the emission of events to the tracing library.

Figure 1 shows screenshots of the analysis of the resulting trace with the performance
analyzer Paraver [15]. Paraver presents performance information with two main displays that
provide qualitatively different types of information. The timeline displays represent the behavior

5



 Michael Wagner et al. / Procedia Computer Science 108C (2017) 2171–2179 2175Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

standard library’s functions with your own version of these functions through the LD PRELOAD

environment variable is supported in most UNIX systems, which makes it a method of choice to
perform symbol substitutions transparently. Moreover, it allows tracing of MPI from Python
programs out-of-the-box since MPI-for-Python packages like MPI4Py [9] provide C-bindings of
the MPI standard to an external shared object that can be dynamically interposed.

This enables to capture entry and exit of MPI calls in Python scripts or mixed Python +
C/Fortran scenarios in an analogous manner as for pure C or Fortran codes along with typical
performance characteristics. However, pure MPI instrumentation provides only limited infor-
mation due to the lack of application context. Therefore, the second target is to complement
the MPI information with source code instrumentation.

3.2 Instrumentation of Source Code Context

A common approach for tools to provide application context is to store the native call-stack (or
parts of it) to attribute the performance to the source code. However, this approach can not
be applied in the context of an interpreted execution, as backtraces of the native call-stack do
not refer to the actual script’s execution flow but to the interpreter’s parsing process. Another
possibility to add context to the trace is to instrument the (main) functions of the program.
There are many approaches to this problem, ranging from source-to-source compilers, auto-
matic compiler instrumentation with -finstrument-functions, binary rewriting or dynamic
injection of monitoring probes. Yet again, these methods can not be applied on interpreted
executions as the target program is not the actual script but the Python interpreter.

In order to support tracing of function entry/exit in Python we rely on the sys module.
This module provides access to some variables used or maintained by the interpreter and to
functions that interact strongly with the interpreter, including profiling capabilities [5]. The
sys.setprofile method allows to implement a Python source code profiler within Python by
setting a callback routine that is invoked on call and return events of the scripts’ functions. It
receives three arguments: frame, event and arg, which identify, respectively, the current stack
frame, whether it is an entry or exit event, and additional arguments. This enables keeping
track of the functions called within the script, and store the activity in the trace.

Next to that, in a mixed Python + C/Fortran execution it is furthermore possible to record
the source code context from the C/Fortran parts via already existing means, e.g. store the
calling context of MPI calls via stack unwinding methods.

3.3 The Extrae Python Module

To support capturing MPI events, user functions, and both combined we developed a new
Python module that can be directly imported into the user’s Python script. This module
conveniently bundles the three main requirements to facilitate the trace recording. First, it
provides dynamic interposition of the tracing library based on ctypes. Ctypes is a foreign
function library for Python that provides C compatible data types and allows calling functions
in shared libraries [1]. Ctypes exports the cdll object for loading dynamic link libraries,
which allows hooking a tracing library through the cdll.LoadLibrary method, with an effect
comparable to pre-loading the library into a binary executable. With this we can load the
Extrae library that intercepts the MPI library to capture the calls to this runtime.

Second, it activates the Python profiler to track the user functions that are called, allowing
to selectively record a subset of the functions during the execution of the Python script. This
way, the Extrae Python module enables monitoring the function calls without any source code
modification by simply providing a list of function names in a plain text file.

4

Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

Third, it provides an interface that allows to pass information from the Python profiler
to the tracing library. We rely on Extrae’s API to emit punctual, user-defined events in the
trace (i.e. Extrae event method). We developed bindings that make the API calls available
in Python, which are called from within the profiler callback to store function entry and exit
events. This way, we can provide user function information to complement MPI communication
activity with the application context. In addition, the interface allows manual instrumentation
of further user events, e.g. iterations, phases, or execution states.

3.4 Other Usage Scenarios

While MPI-for-Python packages are widely used to develop parallel codes, this is not the only
approach. It is also very frequent to use the multiprocessing package, which supports spawning
processes and offers local and remote concurrency. Tracing of Python programs based on
multiprocessing’s Process module is also supported through the mechanisms explained above.
We use the system profiler to track the spawning of processes started from the multiprocessing
module. Whenever we detect calls to a subprocess with a new process ID (i.e. PID), we
interpose the tracing library on the new process through cdll. This way, we can record the
process’ life-span by emitting events through the Extrae API. The support for programs using
multiprocessing’s Pool module is currently still under development. Finally, serial executions
are seamlessly supported through Extrae’s python module by transparently loading the tracing
library and recording of function calls and user-defined punctual events.

4 Evaluation

In this section we evaluate the new Python support with the well-established software package
for electronic structure simulations GPAW [10, 4]. GPAW is implemented in Python and C
and is parallelized with MPI. We consider this a well-suited example since it has demonstrated
about 25% peak performance and good scaling up to tens of thousands of cores [11].

We recorded a basic example from the manual [3] of a calculation for a single H2 molecule
using a supercell of size 6.0 × 6.0 × 6.0 Å, i.e., 32 × 32 × 32 grid points. We used GPAW
in version 1.1.0 with Python 2.7 running in MareNostrum [7], an HPC system at Barcelona
Supercomputing Center (BSC) based on Intel SandyBridge processors. For the recording we
used Extrae 3.4.3 [2] that adds the Python support.

Ahead of the actual measurement run, we execute the script with the profile module enabled
to get an overview of the most common Python functions in the script. Out of these we select
the functions with the longest accumulated duration. The list with the function names is passed
to Extrae, which intercepts the entry/exit of the functions to add them to the trace.

During the recording we also tracked the additional overhead that is introduced by the trace
recording. For this measurement we observed a total overhead of about 5%. Obviously, the
overhead depends strongly on the granularity of the recorded functions. For the instrumentation
of function calls we found an average overhead 4.6 us per entry/exit event, i.e. 9.2 us per
function call. This overhead can be broken down in 2.4 us originating from the Python profiler,
2.0 us for the collection of eight hardware performance counters from PAPI, and 0.2 us for the
tracing library. Recording MPI events shows equivalent costs regarding the access to hardware
performance counters and the emission of events to the tracing library.

Figure 1 shows screenshots of the analysis of the resulting trace with the performance
analyzer Paraver [15]. Paraver presents performance information with two main displays that
provide qualitatively different types of information. The timeline displays represent the behavior

5



2176 Michael Wagner et al. / Procedia Computer Science 108C (2017) 2171–2179Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

Figure 1: Analysis of the H2 molecule example with Paraver. Top: Useful duration for the entire
application (background), a zoom to the iterative phase, and a zoom into the 12th iteration.
Center: Display of the MPI activity. Bottom: Timeline of Python user functions.

6

Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

of an application along time and processes/threads and provides a general understanding of the
application behavior and simple identification of phases and patterns. The statistics display, on
the other hand, allows a numerical analysis of the data that can be applied to any user selected
region, helping to draw conclusions on where and how to focus the optimization effort.

The timelines in Figure 1 highlight different behavioral aspects evolving over time in a
two-dimensional chart. The vertical axis includes the executing processes; the horizontal axis
represents the runtime of the recorded application. At the top, three screenshots depict the
metric Useful Duration, i.e., time spent for computation outside of the parallel runtime; whereas
the color gradient from green to blue represents the length of each compute phase from short
to long, respectively; black marks time outside of useful computation, i.e., time in the parallel
runtime. The three screenshot visualize the application behavior for the entire application
(background), a zoom to the iterative phase (middle), and a zoom into the 12th iteration (front).
It can be seen that there is a relatively long start-up time (orange), which is overrepresented in
this case, since the actual computation phase for the H2 example is rather short. The iterative
phase shows 26 iterative steps before the simulation converged. The zoom to the 12th iteration
reveals three main phases within each iteration; each about one third of time. The second phase
contains another three nested iterations running the Poisson solver, while the third phase shows
a huge imbalance due to only the last two processes are computing, which reduced the overall
load balance within the iteration to 58%.

The timeline in the center shows the MPI communication, whereas the different colors
represent different MPI calls. The first and second phase exhibit multiple non-blocking point-to-
point communication (red =MPI Isend, pink =MPI Irecv, dark red =MPI Wait) while the last
phase is mainly spent in the synchronizing calls to MPI Allreduce (pink) and MPI Waitall (light
green). Both calls last very long since all processes have to wait for the last two processes to
finish their computation. In total the iteration spends on average only 42% in computation and
the rest in communication, with the MPI Allreduce covering about 31% followed by MPI Wait
with 12% and MPI Isend and MPI Irecv with each 4% (all average values).

The last timeline highlights the recorded Python functions with the first phase prevailed
by calls to apply (red) and integrate (orange), the second phase dominated by calls to relax
(white) and apply (red), and in the third phase mainly calls to calculate (pink) and integrate
(orange). Based on this information, general statistics like accumulated function duration
similar to cProfile can be computed.

Next to that, we recorded hardware performance counters to characterize, for instance, the
compute intensity with the derived metric instructions per cycle (IPC) and the communication
data rates. Figure 2 shows two examples of correlating all three types of information (MPI,
user functions, and hardware performance counters) with each other. The statistics display
(histogram) on the left highlights the number of instructions per cycle (IPC) per process and
function, which indicates how efficiently the different functions compute results. Thereby, the
IPC is considered only for computation phases within the functions, i.e. outside of MPI calls.
In this case, the function calculate shows the best compute performance with an average IPC
of 1.5; others exhibit performance of drastically lower IPC, e.g. iterate2. In addition, it can
be seen that iterate2 shows a high variability in the achieved IPC with a balance of only 72%.
The histogram on the right correlates the user functions with the MPI activity; in this example
for the function iterate2. It can be seen that, first, the function spends on average 39% of its
time in MPI Allreduce and, second, that the distribution of computation and communication
shows a large variability. In fact, the variability of the computation time is a direct result of
the imbalance in IPC discussed above since the number of executed instructions (not shown) is
almost perfectly balanced within the function.

7



 Michael Wagner et al. / Procedia Computer Science 108C (2017) 2171–2179 2177Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

Figure 1: Analysis of the H2 molecule example with Paraver. Top: Useful duration for the entire
application (background), a zoom to the iterative phase, and a zoom into the 12th iteration.
Center: Display of the MPI activity. Bottom: Timeline of Python user functions.

6

Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

of an application along time and processes/threads and provides a general understanding of the
application behavior and simple identification of phases and patterns. The statistics display, on
the other hand, allows a numerical analysis of the data that can be applied to any user selected
region, helping to draw conclusions on where and how to focus the optimization effort.

The timelines in Figure 1 highlight different behavioral aspects evolving over time in a
two-dimensional chart. The vertical axis includes the executing processes; the horizontal axis
represents the runtime of the recorded application. At the top, three screenshots depict the
metric Useful Duration, i.e., time spent for computation outside of the parallel runtime; whereas
the color gradient from green to blue represents the length of each compute phase from short
to long, respectively; black marks time outside of useful computation, i.e., time in the parallel
runtime. The three screenshot visualize the application behavior for the entire application
(background), a zoom to the iterative phase (middle), and a zoom into the 12th iteration (front).
It can be seen that there is a relatively long start-up time (orange), which is overrepresented in
this case, since the actual computation phase for the H2 example is rather short. The iterative
phase shows 26 iterative steps before the simulation converged. The zoom to the 12th iteration
reveals three main phases within each iteration; each about one third of time. The second phase
contains another three nested iterations running the Poisson solver, while the third phase shows
a huge imbalance due to only the last two processes are computing, which reduced the overall
load balance within the iteration to 58%.

The timeline in the center shows the MPI communication, whereas the different colors
represent different MPI calls. The first and second phase exhibit multiple non-blocking point-to-
point communication (red =MPI Isend, pink =MPI Irecv, dark red =MPI Wait) while the last
phase is mainly spent in the synchronizing calls to MPI Allreduce (pink) and MPI Waitall (light
green). Both calls last very long since all processes have to wait for the last two processes to
finish their computation. In total the iteration spends on average only 42% in computation and
the rest in communication, with the MPI Allreduce covering about 31% followed by MPI Wait
with 12% and MPI Isend and MPI Irecv with each 4% (all average values).

The last timeline highlights the recorded Python functions with the first phase prevailed
by calls to apply (red) and integrate (orange), the second phase dominated by calls to relax
(white) and apply (red), and in the third phase mainly calls to calculate (pink) and integrate
(orange). Based on this information, general statistics like accumulated function duration
similar to cProfile can be computed.

Next to that, we recorded hardware performance counters to characterize, for instance, the
compute intensity with the derived metric instructions per cycle (IPC) and the communication
data rates. Figure 2 shows two examples of correlating all three types of information (MPI,
user functions, and hardware performance counters) with each other. The statistics display
(histogram) on the left highlights the number of instructions per cycle (IPC) per process and
function, which indicates how efficiently the different functions compute results. Thereby, the
IPC is considered only for computation phases within the functions, i.e. outside of MPI calls.
In this case, the function calculate shows the best compute performance with an average IPC
of 1.5; others exhibit performance of drastically lower IPC, e.g. iterate2. In addition, it can
be seen that iterate2 shows a high variability in the achieved IPC with a balance of only 72%.
The histogram on the right correlates the user functions with the MPI activity; in this example
for the function iterate2. It can be seen that, first, the function spends on average 39% of its
time in MPI Allreduce and, second, that the distribution of computation and communication
shows a large variability. In fact, the variability of the computation time is a direct result of
the imbalance in IPC discussed above since the number of executed instructions (not shown) is
almost perfectly balanced within the function.

7



2178 Michael Wagner et al. / Procedia Computer Science 108C (2017) 2171–2179Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

Figure 2: Histograms showing the IPC per process and function (left) and the time spent in
computation and communication in the function iterate2.

While the given screenshots can only hint at the analysis capabilities provided by the
recorded traces, they demonstrate that the Python support in Extrae provides equivalent infor-
mation as for traditional C or Fortran applications. The recorded information allows to, first,
analyze and understand the behavior of the application over time, second, use the statistical
tools within Paraver to quantify the performance behavior and potential issues like compute
intensity or load balance, and, third, correlate the identified behavior and issues to the source
code location within the Python scripts.

5 Conclusions

Python, already a widely-used programming language, is becoming more and more popular
within the HPC community since its simple syntax, large standard library, as well as powerful
third-party libraries for scientific computing make it very attractive, especially, to domain
scientists. Despite Python lowering the bar for accessing parallel computing, utilizing the
capacities of HPC systems efficiently remains a challenging task, after all.

Consequently, support from appropriate tools like performance analyzers is inevitable, yet,
currently the few tools that exist only offer basic feedback in the form of summarized profile
data. In this paper, we share our efforts in developing event-based tracing support for Python
within the performance monitor Extrae to provide detailed information and enable a profound
performance analysis. We explored common methods to instrument the MPI runtime for C/For-
tran applications and applied analogous mechanisms relying on library pre-loading and dynamic
linking to make information from the parallel runtime available for Python programs. In order
to complement this information with the according application context, we developed selec-

8

Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

tive user function instrumentation based on Python’s system profiler and provide C-bindings
to transfer the data to an external tracing library. We created a Python module that can be
imported into any Python script to conveniently incorporate this functionality.

We evaluate our implementation by analyzing the electronic structure simulation package
GPAW. The recorded information allows to analyze and understand the behavior of the applica-
tion, identify performance issues, and correlate them to the source code. We demonstrate that
the recorded traces provide equivalent information as for traditional C or Fortran applications
and, therefore, offering the same profound analysis capabilities now for Python, as well.

References

[1] ctypes - A foreign function library for Python. https://docs.python.org/2/library/ctypes.html
[Online; accessed 2017-01-01].

[2] Extrae instrumentation package. http://tools.bsc.es/extrae [Online; accessed 2017-02-07].

[3] GPAW Manual. https://wiki.fysik.dtu.dk/gpaw/documentation/manual.html [Online; accessed
2017-02-08].

[4] GPAW website. https://wiki.fysik.dtu.dk/gpaw [Online; accessed 2017-02-06].

[5] sys - System-specific parameters and functions. https://docs.python.org/2/library/sys.html [On-
line; accessed 2017-01-01].

[6] The Python Profilers. https://docs.python.org/2/library/profile.html [Online; accessed 2017-02-
07].

[7] MareNostrum III User’s Guide, 2016. https://www.bsc.es/support/MareNostrum3-ug.pdf.

[8] Allinea. How to debug and profile those mixed Python and Fortran codes.
https://www.allinea.com/blog/201502/how-to-debug-and-profile-mixed-python-and-fortran-codes
[Online; accessed 2017-02-07].

[9] Lisandro Dalćın, Rodrigo Paz, and Mario Storti. MPI for python. Journal of Parallel and Dis-
tributed Computing, 65(9):1108–1115, 2005.

[10] J Enkovaara, C Rostgaard, J J Mortensen, J Chen, M Duak, L Ferrighi, J Gavnholt, C Glinsvad,
V Haikola, H A Hansen, H H Kristoffersen, M Kuisma, A H Larsen, L Lehtovaara, M Ljungberg,
O Lopez-Acevedo, P G Moses, J Ojanen, T Olsen, V Petzold, N A Romero, J Stausholm-Møller,
M Strange, G A Tritsaris, M Vanin, M Walter, B Hammer, H Häkkinen, G K H Madsen, R M
Nieminen, J K Nørskov, M Puska, T T Rantala, J Schiøtz, K S Thygesen, and K W Jacobsen.
Electronic Structure Calculations with GPAW: A Real-space Implementation of the Projector
Augmented-wave Method. Journal of Physics: Condensed Matter, 22(25):253202, 2010.

[11] Jussi Enkovaara, Nichols A. Romero, Sameer Shende, and Jens J. Mortensen. GPAW - Mas-
sively Parallel Electronic Structure Calculations with Python-based Software. Procedia Computer
Science, 4:17–25, 2011.

[12] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 3.1, 2015.
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[13] Intel. A Performance Analysis of Python* Applications with Intel R© VTuneTM Ampli-
fier. https://software.intel.com/en-us/videos/performance-analysis-of-python-applications-with-
intel-vtune-amplifier [Online; accessed 2017-02-07].

[14] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2017. http://www.scipy.org [Online; accessed 2017-02-06].

[15] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. Paraver: A Tool to Visu-
alize and Analyze Parallel Code. Transputer and occam Developments, pages 17–32, 1995.
https://tools.bsc.es/paraver.

[16] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The NumPy Array: A Structure for
Efficient Numerical Computation. Computing in Science & Engineering, 13(2):22–30, 2011.

9



 Michael Wagner et al. / Procedia Computer Science 108C (2017) 2171–2179 2179Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

Figure 2: Histograms showing the IPC per process and function (left) and the time spent in
computation and communication in the function iterate2.

While the given screenshots can only hint at the analysis capabilities provided by the
recorded traces, they demonstrate that the Python support in Extrae provides equivalent infor-
mation as for traditional C or Fortran applications. The recorded information allows to, first,
analyze and understand the behavior of the application over time, second, use the statistical
tools within Paraver to quantify the performance behavior and potential issues like compute
intensity or load balance, and, third, correlate the identified behavior and issues to the source
code location within the Python scripts.

5 Conclusions

Python, already a widely-used programming language, is becoming more and more popular
within the HPC community since its simple syntax, large standard library, as well as powerful
third-party libraries for scientific computing make it very attractive, especially, to domain
scientists. Despite Python lowering the bar for accessing parallel computing, utilizing the
capacities of HPC systems efficiently remains a challenging task, after all.

Consequently, support from appropriate tools like performance analyzers is inevitable, yet,
currently the few tools that exist only offer basic feedback in the form of summarized profile
data. In this paper, we share our efforts in developing event-based tracing support for Python
within the performance monitor Extrae to provide detailed information and enable a profound
performance analysis. We explored common methods to instrument the MPI runtime for C/For-
tran applications and applied analogous mechanisms relying on library pre-loading and dynamic
linking to make information from the parallel runtime available for Python programs. In order
to complement this information with the according application context, we developed selec-

8

Performance Analysis of Parallel Python Applications Wagner, Llort, Mercadal, Giménez, Labarta

tive user function instrumentation based on Python’s system profiler and provide C-bindings
to transfer the data to an external tracing library. We created a Python module that can be
imported into any Python script to conveniently incorporate this functionality.

We evaluate our implementation by analyzing the electronic structure simulation package
GPAW. The recorded information allows to analyze and understand the behavior of the applica-
tion, identify performance issues, and correlate them to the source code. We demonstrate that
the recorded traces provide equivalent information as for traditional C or Fortran applications
and, therefore, offering the same profound analysis capabilities now for Python, as well.

References

[1] ctypes - A foreign function library for Python. https://docs.python.org/2/library/ctypes.html
[Online; accessed 2017-01-01].

[2] Extrae instrumentation package. http://tools.bsc.es/extrae [Online; accessed 2017-02-07].

[3] GPAW Manual. https://wiki.fysik.dtu.dk/gpaw/documentation/manual.html [Online; accessed
2017-02-08].

[4] GPAW website. https://wiki.fysik.dtu.dk/gpaw [Online; accessed 2017-02-06].

[5] sys - System-specific parameters and functions. https://docs.python.org/2/library/sys.html [On-
line; accessed 2017-01-01].

[6] The Python Profilers. https://docs.python.org/2/library/profile.html [Online; accessed 2017-02-
07].

[7] MareNostrum III User’s Guide, 2016. https://www.bsc.es/support/MareNostrum3-ug.pdf.

[8] Allinea. How to debug and profile those mixed Python and Fortran codes.
https://www.allinea.com/blog/201502/how-to-debug-and-profile-mixed-python-and-fortran-codes
[Online; accessed 2017-02-07].

[9] Lisandro Dalćın, Rodrigo Paz, and Mario Storti. MPI for python. Journal of Parallel and Dis-
tributed Computing, 65(9):1108–1115, 2005.

[10] J Enkovaara, C Rostgaard, J J Mortensen, J Chen, M Duak, L Ferrighi, J Gavnholt, C Glinsvad,
V Haikola, H A Hansen, H H Kristoffersen, M Kuisma, A H Larsen, L Lehtovaara, M Ljungberg,
O Lopez-Acevedo, P G Moses, J Ojanen, T Olsen, V Petzold, N A Romero, J Stausholm-Møller,
M Strange, G A Tritsaris, M Vanin, M Walter, B Hammer, H Häkkinen, G K H Madsen, R M
Nieminen, J K Nørskov, M Puska, T T Rantala, J Schiøtz, K S Thygesen, and K W Jacobsen.
Electronic Structure Calculations with GPAW: A Real-space Implementation of the Projector
Augmented-wave Method. Journal of Physics: Condensed Matter, 22(25):253202, 2010.

[11] Jussi Enkovaara, Nichols A. Romero, Sameer Shende, and Jens J. Mortensen. GPAW - Mas-
sively Parallel Electronic Structure Calculations with Python-based Software. Procedia Computer
Science, 4:17–25, 2011.

[12] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 3.1, 2015.
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[13] Intel. A Performance Analysis of Python* Applications with Intel R© VTuneTM Ampli-
fier. https://software.intel.com/en-us/videos/performance-analysis-of-python-applications-with-
intel-vtune-amplifier [Online; accessed 2017-02-07].

[14] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2017. http://www.scipy.org [Online; accessed 2017-02-06].

[15] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. Paraver: A Tool to Visu-
alize and Analyze Parallel Code. Transputer and occam Developments, pages 17–32, 1995.
https://tools.bsc.es/paraver.

[16] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The NumPy Array: A Structure for
Efficient Numerical Computation. Computing in Science & Engineering, 13(2):22–30, 2011.

9


