7,128 research outputs found

    A Glimpse Far into the Future: Understanding Long-term Crowd Worker Quality

    Full text link
    Microtask crowdsourcing is increasingly critical to the creation of extremely large datasets. As a result, crowd workers spend weeks or months repeating the exact same tasks, making it necessary to understand their behavior over these long periods of time. We utilize three large, longitudinal datasets of nine million annotations collected from Amazon Mechanical Turk to examine claims that workers fatigue or satisfice over these long periods, producing lower quality work. We find that, contrary to these claims, workers are extremely stable in their quality over the entire period. To understand whether workers set their quality based on the task's requirements for acceptance, we then perform an experiment where we vary the required quality for a large crowdsourcing task. Workers did not adjust their quality based on the acceptance threshold: workers who were above the threshold continued working at their usual quality level, and workers below the threshold self-selected themselves out of the task. Capitalizing on this consistency, we demonstrate that it is possible to predict workers' long-term quality using just a glimpse of their quality on the first five tasks.Comment: 10 pages, 11 figures, accepted CSCW 201

    Geometric reasoning via internet crowdsourcing

    Get PDF
    The ability to interpret and reason about shapes is a peculiarly human capability that has proven difficult to reproduce algorithmically. So despite the fact that geometric modeling technology has made significant advances in the representation, display and modification of shapes, there have only been incremental advances in geometric reasoning. For example, although today's CAD systems can confidently identify isolated cylindrical holes, they struggle with more ambiguous tasks such as the identification of partial symmetries or similarities in arbitrary geometries. Even well defined problems such as 2D shape nesting or 3D packing generally resist elegant solution and rely instead on brute force explorations of a subset of the many possible solutions. Identifying economic ways to solving such problems would result in significant productivity gains across a wide range of industrial applications. The authors hypothesize that Internet Crowdsourcing might provide a pragmatic way of removing many geometric reasoning bottlenecks.This paper reports the results of experiments conducted with Amazon's mTurk site and designed to determine the feasibility of using Internet Crowdsourcing to carry out geometric reasoning tasks as well as establish some benchmark data for the quality, speed and costs of using this approach.After describing the general architecture and terminology of the mTurk Crowdsourcing system, the paper details the implementation and results of the following three investigations; 1) the identification of "Canonical" viewpoints for individual shapes, 2) the quantification of "similarity" relationships with-in collections of 3D models and 3) the efficient packing of 2D Strips into rectangular areas. The paper concludes with a discussion of the possibilities and limitations of the approach

    Disagreeable Privacy Policies: Mismatches between Meaning and Users’ Understanding

    Get PDF
    Privacy policies are verbose, difficult to understand, take too long to read, and may be the least-read items on most websites even as users express growing concerns about information collection practices. For all their faults, though, privacy policies remain the single most important source of information for users to attempt to learn how companies collect, use, and share data. Likewise, these policies form the basis for the self-regulatory notice and choice framework that is designed and promoted as a replacement for regulation. The underlying value and legitimacy of notice and choice depends, however, on the ability of users to understand privacy policies. This paper investigates the differences in interpretation among expert, knowledgeable, and typical users and explores whether those groups can understand the practices described in privacy policies at a level sufficient to support rational decision-making. The paper seeks to fill an important gap in the understanding of privacy policies through primary research on user interpretation and to inform the development of technologies combining natural language processing, machine learning and crowdsourcing for policy interpretation and summarization. For this research, we recruited a group of law and public policy graduate students at Fordham University, Carnegie Mellon University, and the University of Pittsburgh (“knowledgeable users”) and presented these law and policy researchers with a set of privacy policies from companies in the e-commerce and news & entertainment industries. We asked them nine basic questions about the policies’ statements regarding data collection, data use, and retention. We then presented the same set of policies to a group of privacy experts and to a group of non-expert users. The findings show areas of common understanding across all groups for certain data collection and deletion practices, but also demonstrate very important discrepancies in the interpretation of privacy policy language, particularly with respect to data sharing. The discordant interpretations arose both within groups and between the experts and the two other groups. The presence of these significant discrepancies has critical implications. First, the common understandings of some attributes of described data practices mean that semi-automated extraction of meaning from website privacy policies may be able to assist typical users and improve the effectiveness of notice by conveying the true meaning to users. However, the disagreements among experts and disagreement between experts and the other groups reflect that ambiguous wording in typical privacy policies undermines the ability of privacy policies to effectively convey notice of data practices to the general public. The results of this research will, consequently, have significant policy implications for the construction of the notice and choice framework and for the US reliance on this approach. The gap in interpretation indicates that privacy policies may be misleading the general public and that those policies could be considered legally unfair and deceptive. And, where websites are not effectively conveying privacy policies to consumers in a way that a “reasonable person” could, in fact, understand the policies, “notice and choice” fails as a framework. Such a failure has broad international implications since websites extend their reach beyond the United States

    Adversarial Learning for Chinese NER from Crowd Annotations

    Full text link
    To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.Comment: 8 pages, AAAI-201

    Validation of purdue engineering shape benchmark clusters by crowdsourcing

    Get PDF
    The effective organization of CAD data archives is central to PLM and consequently content based retrieval of 2D drawings and 3D models is often seen as a "holy grail" for the industry. Given this context, it is not surprising that the vision of a "Google for shape", which enables engineers to search databases of 3D models for components similar in shape to a query part, has motivated numerous researchers to investigate algorithms for computing geometric similarity. Measuring the effectiveness of the many approaches proposed has in turn lead to the creation of benchmark datasets against which researchers can compare the performance of their search engines. However to be useful the datasets used to measure the effectiveness of 3D retrieval algorithms must not only define a collection of models, but also provide a canonical specification of their relative similarity. Because the objective of shape retrieval algorithms is (typically) to retrieve groups of objects that humans perceive as "similar" these benchmark similarity relationships have (by definition) to be manually determined through inspection
    • 

    corecore