5 research outputs found

    Fast Exact NPN Classification with Influence-aided Canonical Form

    Full text link
    NPN classification has many applications in the synthesis and verification of digital circuits. The canonical-form-based method is the most common approach, designing a canonical form as representative for the NPN equivalence class first and then computing the transformation function according to the canonical form. Most works use variable symmetries and several signatures, mainly based on the cofactor, to simplify the canonical form construction and computation. This paper describes a novel canonical form and its computation algorithm by introducing Boolean influence to NPN classification, which is a basic concept in analysis of Boolean functions. We show that influence is input-negation-independent, input-permutation-dependent, and has other structural information than previous signatures for NPN classification. Therefore, it is a significant ingredient in speeding up NPN classification. Experimental results prove that influence plays an important role in reducing the transformation enumeration in computing the canonical form. Compared with the state-of-the-art algorithm implemented in ABC, our influence-aided canonical form for exact NPN classification gains up to 5.5x speedup.Comment: To be appeared in ICCAD'2

    Fast Adjustable NPN Classification Using Generalized Symmetries

    Get PDF
    NPN classification of Boolean functions is a powerful technique used in many logic synthesis and technology mapping tools in FPGA design flows. Computing the canonical form of a function is the most common approach of Boolean function classification. In this paper, a novel algorithm for computing NPN canonical form is proposed. By exploiting symmetries under different phase assignments and higher-order symmetries of Boolean functions, the search space of NPN canonical form computation is pruned and the runtime is dramatically reduced. The algorithm can be adjusted to be a slow exact algorithm or a fast heuristic algorithm with lower quality. For exact classification, the proposed algorithm achieves a 30× speedup compared to a state-of-the-art algorithm. For heuristic classification, the proposed algorithm has similar performance as the state-of-the-art algorithm with a possibility to trade runtime for quality

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore