
Chapman University
Chapman University Digital Commons
Mathematics, Physics, and Computer Science
Faculty Articles and Research

Science and Technology Faculty Articles and
Research

8-2018

Fast Adjustable NPN Classification Using
Generalized Symmetries
Xuegong Zhou
Fudan University

Lingli Wang
Fudan University

Peiyi Zhao
Chapman University, zhao@chapman.edu

Alan Mishchenko
University of California - Berkeley

Follow this and additional works at: https://digitalcommons.chapman.edu/scs_articles

Part of the Applied Mathematics Commons, Logic and Foundations Commons, and the Other
Mathematics Commons

This Conference Proceeding is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman
University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an
authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
X. Zhou, L. Wang, P. Zhao, and A. Mishchenko, "Fast adjustable NPN classification using generalized symmetries", Proc. FPL'18,
2018. doi: 10.1109/FPL.2018.00008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Chapman University Digital Commons

https://core.ac.uk/display/215787206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu

Fast Adjustable NPN Classification Using Generalized Symmetries

Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Proceedings of the
28th International Conference on Field Programmable Logic and Applications (FPL) in 2018. The definitive
publisher-authenticated version is available online at DOI: 10.1109/FPL.2018.00008.

Copyright
IEEE

This conference proceeding is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/
scs_articles/602

https://doi.org/10.1109/FPL.2018.00008
https://digitalcommons.chapman.edu/scs_articles/602?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/scs_articles/602?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages

Fast Adjustable NPN Classification Using

Generalized Symmetries

Xuegong Zhou1, Lingli Wang1, Peiyi Zhao2, Alan Mishchenko3
1State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203, China

2Integrated Circuit and Embedded Systems Lab, Chapman University, Orange, CA, USA
3Department of EECS, University of California at Berkeley, Berkeley, CA 94720, USA

zhouxg@fudan.edu.cn

Abstract—NPN classification of Boolean functions is a

powerful technique used in many logic synthesis and technology

mapping tools in FPGA design flows. Computing the canonical

form of a function is the most common approach of Boolean

function classification. In this paper, a novel algorithm for

computing NPN canonical form is proposed. By exploiting

symmetries under different phase assignments and higher-order

symmetries of Boolean functions, the search space of NPN

canonical form computation is pruned and the runtime is

dramatically reduced. The algorithm can be adjusted to be a slow

exact algorithm or a fast heuristic algorithm with lower quality.

For exact classification, the proposed algorithm achieves a 30×

speedup compared to a state-of-the-art algorithm. For heuristic

classification, the proposed algorithm has similar performance as

the state-of-the-art algorithm with a possibility to trade runtime

for quality.

Keywords—NPN classification, Boolean matching, symmetry,

canonical form, cofactor signature

I. INTRODUCTION

Classification of Boolean functions is the task of grouping
similar functions into equivalence classes. A related problem is
Boolean matching, which checks whether two functions belong
to the same equivalent class.

The most frequently used classification method is based on
Negation-Permutation-Negation (NPN) equivalence. Two
single-output Boolean functions are NPN equivalent, if one of
them can be obtained from the other by negating inputs,
permuting inputs, and negating the output.

NPN classification has many applications in logic synthesis
[1]-[4] and technology mapping [5]-[9] for FPGAs. In synthesis,
optimal or near-optimal circuits for a large number of practical
functions can be precomputed and stored in a library. With
Boolean function classification, only one function in each
equivalence class needs to be in the library, resulting in a
dramatic reduction of the library size [2][4].

In technology mapping, NPN classes of functions that can be
matched against a programmable cell are pre-computed and
stored in a hash-table, to allow for a quick constant-time check
whether a function is realizable using the given cell. Several
recent studies are based on this approach [8][9].

In these applications, the speed of NPN classification
determines the speed of the synthesis engine or the technology
mapper. This is because library precomputation can be done
offline, but NPN classification is done online during runtime.

Similarly, if the quality of NPN classification is poor, more
precomputation has to be done and the resulting library takes
more memory.

A common approach of NPN classification is to construct a
canonical form for a Boolean function 𝑓, and use this canonical
form as the representative of the equivalence class 𝑓 belongs to.
There are several NPN canonical forms, such as the function
with the smallest truth table representation [10][11], or with the
smallest spectrum representation in the NPN equivalence class
[12]-[14].

Naïve computation of the canonical form requires exhaustive
enumeration of all the possible transformations. For NPN
classification of n input Boolean functions, n! permutations and
2n+1 negations should be enumerated. Various methods based on
signatures [10][11] and variable symmetry [10][11][13]-[16] are
used to reduce the computation cost. However, none of the
method works well for all functions. In some cases, semi-
canonical form can be used instead of the exact canonical form
[15][17] in order to get practical runtime.

The main contributions of the paper are:

 An in-depth study of NPN classification as a theoretical
guidance to define new canonical forms, and to
determine how the canonical form computation can be
adapted in a given application.

 A hybrid NPN canonical form introduced by combining
the cofactor signature and the truth table. By exploiting
various symmetries of Boolean functions, this canonical
form is computed efficiently for many Boolean functions.

 A new heuristic method is introduced to classify rare
difficult functions without symmetric variables, whose
input variables cannot be distinguished by the signatures.
By adjusting the exact-to-heuristic ratio, the proposed
algorithm trades runtime for the classification quality.

The proposed approach is the most general among the
existing ones while at the same time being the most practical.
The proposed implementation in ABC outperforms other
methods in each category. In particular, the exact method is 30x
faster than the best available exact method, while the heuristic
method has similar runtime but better quality, and allows for a
number of other quality/runtime tradeoffs.

The paper is organized as follows. Section II formally
introduces the terminology. Section III defines the generalized

variable symmetry. Section IV defines the hybrid canonical
form. Section V describes the algorithm. Section VI shows the
results of the experimental evaluation, and Section VII
concludes the paper.

II. PRELIMINARIES

A. Boolean Function

This paper deals with completely specified Boolean
functions, 𝑓(𝑋): 𝐵𝑛 → 𝐵, 𝐵 = {0,1}, where 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑛)
is a bit vector of size n, 𝑥𝑖 ∈ 𝐵. When the input bit vector is
considered as a binary number, whose value is m, the
corresponding bit vector is denoted as 𝑋(𝑚). The truth table of

function 𝑓 is a bit vector of size 2n, composed of the output value

of the function: 𝑇(𝑓) = (𝑓(𝑋(2𝑛−1)), … , 𝑓(𝑋(1)), 𝑓(𝑋(0))).

A literal 𝑥̇ is a variable 𝑥 or its complement 𝑥̅. A cube is the
Boolean conjunction of literals. A minterm is a cube with n
literals. The satisfy count of a function, denoted as |𝑓|, is the
number of on-set minterms covered by 𝑓.

The cofactor of 𝑓 with respect to a literal 𝑥̇, denoted as 𝑓𝑥̇, is
the function obtained by setting 𝑥̇ to 1 in 𝑓. The cofactor of 𝑓
with respect to cube c, denoted as 𝑓𝑐, is the function obtained by
setting all literals of the cube to 1.

A Boolean function 𝑓 is called balanced if |𝑓| = |𝑓|̅. An
input variable 𝑥 is called balanced if |𝑓𝑥| = |𝑓𝑥̅|.

B. NPN Equivalence

Definition 1: An NPN transformation 𝜏 on a Boolean
function is a phase assignment, followed by a permutation of its
input variables, followed by a polarity assignment of its output.
Applying transformation 𝜏 to function 𝑓 is denoted as 𝑓 ∘ 𝜏.

For a Boolean function of n inputs, there are 2n+1n! distinct
NPN transformations. We denote a transformation 𝜏 by a vector
of literals to indicate the permutation and phases of the inputs
and a 𝑧 indicating the polarity of the output. For example,
applying transformation 𝜏 = (𝑥2̅̅ ̅, 𝑥1, 𝑥3, 𝑧̅) to function
𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 + 𝑥2𝑥3 results in a new function 𝑓 ∘ 𝜏 =
𝑥2̅̅ ̅𝑥1 + 𝑥1𝑥3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , which replaces 𝑥1 with 𝑥2̅̅ ̅ , and 𝑥2 with 𝑥1
respectively, while also negating the output.

Definition 2: Two Boolean functions, 𝑓 and 𝑔 , are NPN
equivalent, denoted as 𝑓 ≡ 𝑔 , if there exists an NPN

transformation , such that 𝑓 ∘ τ is equal to 𝑔.

The NPN equivalence is an equivalence relation, which
partitions all single-output Boolean functions into equivalence
classes. The NPN equivalence class of a function 𝑓 is denoted
[𝑓] and is defined as the set of functions that are NPN equivalent
to 𝑓, i.e. [𝑓] = {𝑔 | 𝑓 ≡ 𝑔}.

As an example, for function 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 + 𝑥3, its
NPN equivalence class contains 48 functions, such as 𝑥1𝑥3̅̅ ̅ + 𝑥2
and 𝑥2𝑥3 + 𝑥1̅̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , with their corresponding NPN transformations
(𝑥1, 𝑥3̅̅ ̅, 𝑥2, 𝑧) and (𝑥2, 𝑥3, 𝑥1̅̅̅, 𝑧̅). There are in total 23+13! =96
different NPN transformations of 3 variable functions. Some
transformations may produce the same function because of the
variable symmetry, hence the equivalence class contains much
less functions than 96.

III. SYMMETRY RELATIONSHIP

A. First-Order Symmetries

Definition 3 (variable symmetry): Two variables 𝑥𝑖 and 𝑥𝑗

are said to be symmetric in function 𝑓, which is denoted by 𝑥𝑖

↔ 𝑥𝑗 , if 𝑓 is invariant under an exchange of 𝑥𝑖 and 𝑥𝑗 , i.e.

𝑓(… , 𝑥𝑖 , … , 𝑥𝑗 , …) = 𝑓(… , 𝑥𝑗 , … , 𝑥𝑖 , …) . This classical

symmetry is called nonequivalent-symmetry (NE-symmetry).
When considering the phase assignment, if 𝑓 is invariant under

an exchange of 𝑥𝑖 and 𝑥̅𝑗 , i.e. 𝑓(… , 𝑥𝑖 , … , 𝑥̅𝑗 , …) =
𝑓(… , 𝑥̅𝑗 , … , 𝑥𝑖 , …), variables 𝑥𝑖 and 𝑥𝑗 are said to be equivalent-

symmetric (E-symmetric), which is denoted by 𝑥𝑖 ↔ 𝑥̅𝑗. If 𝑥𝑖 and

𝑥𝑗 are simultaneously NE- and E-symmetric, then 𝑥𝑖 and 𝑥𝑗 are

said to be multiform symmetric, which is denoted by 𝑥𝑖

m
↔ 𝑥𝑗.

It can be shown using Boole’s expansion theorem that
variable symmetry is equivalent to the equality of the cofactor

pair, i.e. 𝑥𝑖 ↔ 𝑥𝑗 if and only if 𝑓𝑥̅𝑖𝑥𝑗
= 𝑓𝑥𝑖𝑥̅𝑗

; 𝑥𝑖 ↔ 𝑥̅𝑗 if and only

if 𝑓𝑥𝑖𝑥𝑗
= 𝑓𝑥̅𝑖𝑥̅𝑗

[18]. There are a number of efficient algorithms

in the literatures for symmetry detection [18][19].

By negating one symmetric variable of the function 𝑓, the E-
symmetry is converted to NE-symmetry. Therefore, in the
classification process, only NE-symmetry and multiform
symmetry are considered. The multiform symmetry cannot be
simply regarded as NE-symmetry, and must be manipulated
separately. Many existing classification methods [13][15]
neglected this difference.

The NE-symmetry and the multiform symmetry are both
equivalence relations, while the E-symmetry is not. Hence, these
equivalence relations can be used to partition the input variables
𝑥1, 𝑥2, … 𝑥𝑛 into equivalence classes.

Definition 4 (symmetric class): When the variables in an
equivalence class are NE-symmetric, this class is called a NE-
symmetric class, which is denoted by [𝑥𝑖1

, 𝑥𝑖2
, … 𝑥𝑖𝑚

]. When the

variables in an equivalence class are multiform symmetric, this
class is called a multiform symmetric class, which is denoted by
〈𝑥𝑖1

, 𝑥𝑖2
, … 𝑥𝑖𝑚

〉.

The phases of variables in a NE-symmetric classes are
determined, while the phases of variables in a multiform classes
are undetermined, an arbitrary phase can be chosen for these
variables.

The following theorem is useful for manipulating the phase
assignment of the multiform symmetric classes.

Lemma 1: Let 𝑥𝑖 and 𝑥𝑗 be E-symmetric, 𝑥𝑖 ↔ 𝑥̅𝑗 , then

𝑓(… , 𝑥𝑖 , … , 𝑥𝑗 , …) = 𝑓(… , 𝑥̅𝑗 , … , 𝑥̅𝑖 , …).

Proof: 𝑓(… , 𝑥𝑖 , … , 𝑥𝑗 , …) = 𝑓(… , 𝑥𝑖 , … , 𝑥𝑗̅̅, …) =
𝑓(… , 𝑥̅𝑗 , … , 𝑥̅𝑖 , …). ∎

Theorem 1: Let 𝑥𝑖 and 𝑥𝑗 be multiform symmetric, 𝑥𝑖

m
↔ 𝑥𝑗,

then 𝑓(… , 𝑥𝑖 , … , 𝑥𝑗 , …) = 𝑓(… , 𝑥̅𝑖 , … , 𝑥̅𝑗 , …).

Proof: 𝑓(… , 𝑥𝑖 , … , 𝑥𝑗 , …) = 𝑓(… , 𝑥𝑗 , … , 𝑥𝑖 …) =
𝑓(… , 𝑥̅𝑖 , … , 𝑥̅𝑗 , …). ∎

Theorem 1 indicates that, when negating even number of the
variables in a multiform symmetric class, the function is
invariant. Only two different phase assignments of an m variable
multiform symmetric class need to be considered, instead of the
whole 2m phase assignments.

B. Higher-Order Symmetries

The symmetric relation of two variables can be extended to
two symmetric classes, as a second-order symmetry [20].

Definition 5 (second-order symmetry): Two NE-
symmetric classes or two multiform symmetric classes with the
same size 𝐶𝑖 = (𝑥𝑖1

, 𝑥𝑖2
, … 𝑥𝑖𝑚

) and 𝐶𝑗 = (𝑥𝑗1
, 𝑥𝑗2

, … 𝑥𝑗𝑚
) of a

function 𝑓 are said to be NE-symmetric, if 𝑓 is invariant under

an exchange of 𝐶𝑖 and 𝐶𝑗, i.e. 𝑓(… , 𝑥𝑖1
, … , 𝑥𝑖2

, … 𝑥𝑖𝑚
, … , 𝑥𝑗1

, … ,

𝑥𝑗2
, … 𝑥𝑗𝑚

, …) = 𝑓(… , 𝑥𝑗1
, … , 𝑥𝑗2

, … 𝑥𝑗𝑚
, … , 𝑥𝑖1

, … , 𝑥𝑖2
, … 𝑥𝑖𝑚

,

…); 𝐶𝑖 and 𝐶𝑗 are said to be E-symmetric, if 𝑓 is invariant under

an exchange of 𝐶𝑖 and 𝐶𝑗̅ , i.e. 𝑓(… , 𝑥𝑖1
, … , 𝑥𝑖2

, … 𝑥𝑖𝑚
, … ,

𝑥̅𝑗1
, … , 𝑥̅𝑗2

, … 𝑥̅𝑗𝑚
, …) = 𝑓(… , 𝑥̅𝑗1

, … , 𝑥̅𝑗2
, … 𝑥̅𝑗𝑚

, … , 𝑥𝑖1
, … , 𝑥𝑖2

,

… , 𝑥𝑖𝑚
, …) . If 𝐶𝑖 and 𝐶𝑗 are simultaneously NE- and E-

symmetric, then 𝐶𝑖 and 𝐶𝑗 are said to be multiform symmetric.

Definition 6 (symmetry with single negation): Two
multiform symmetric classes with the same size 𝐶𝑖 =
〈𝑥𝑖1

, 𝑥𝑖2
, … 𝑥𝑖𝑚

〉 and 𝐶𝑗 = 〈𝑥𝑗1
, 𝑥𝑗2

, … 𝑥𝑗𝑚
〉 of a function 𝑓 are

said to be symmetric with single negation (SN-symmetric), if 𝑓
is invariant under an exchange of 𝐶𝑖 and 𝐶𝑗with negating a single

variable, i.e. 𝑓(… , 𝑥𝑖1
, … , 𝑥𝑖2

, … 𝑥𝑖𝑚
, … , 𝑥̅𝑗1

, … , 𝑥𝑗2
, … 𝑥𝑗𝑚

,

…) = 𝑓(… , 𝑥̅𝑗1
, … , 𝑥𝑗2

, … 𝑥𝑗𝑚
, … , 𝑥𝑖1

, … , 𝑥𝑖2
, … 𝑥𝑖𝑚

, …).

Note that, in the definition of second-order E-symmetry, all
the variables in class 𝐶𝑗 need to be negated. While in the

definition of second-order SN-symmetry, only one variable in
class 𝐶𝑗 need to be negated. Theorem 1 only valid for first-order

multiform symmetry, but not valid for second-order multiform
symmetry.

Second-order NE-symmetry and multiform symmetry are
both equivalence relations, while second-order E-symmetry and
SN-symmetry are not. If two symmetric classes 𝐶𝑖 and 𝐶𝑗 are

NE-symmetric or multiform symmetric, they can be merged into
one second-order symmetric class. If they are E-symmetric or
SN-symmetric, all the variables ore one of the variable in 𝐶𝑗 can

be negated to convert the symmetric relation to NE-symmetry,
then the two classes can be merged. Three or more symmetric
classes can be merged in the same way. This merge process can
be operated recursively to generate higher-order symmetric
classes.

For example, given a function 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) =
(𝑥1𝑥2 + 𝑥3𝑥4̅̅ ̅)(𝑥5𝑥6) , we have 𝑥1 ↔ 𝑥2 , 𝑥3 ↔ 𝑥4̅̅ ̅ and 𝑥5
m
↔ 𝑥6. The input variables can be divided into three symmetry
classes: 𝐶1 = [𝑥1, 𝑥2] , 𝐶2 = [𝑥3, 𝑥4̅̅ ̅] and 𝐶3 = 〈𝑥5, 𝑥6〉 .
Because 𝐶1 ↔ 𝐶2, these two class can be merged into a second-
order symmetry class 𝐶12 = [[𝑥1, 𝑥2], [𝑥3, 𝑥4̅̅ ̅]].

IV. CANONICAL FORM

A. General Definition

The canonical form of a function 𝑓 is a representative
selected among functions of its NPN equivalence class [𝑓]
based on a criterion. There are several different canonical forms
defined by the previous works [10][13][14][21]. A more general
definition is given below.

Definition 7: Let 𝐹𝑛 be the set of Boolean functions with n
input variables. The NPN canonical form is a function of
Boolean functions that satisfies two conditions, (𝑓): 𝐹𝑛 → 𝐹𝑛,

1) (𝑓) ∈ [𝑓],

2) ∀𝑔 ∈ [𝑓]: (𝑔) = (𝑓)

A comparable signature of Boolean functions can be used to
define an ordering of Boolean functions, and then a concrete
canonical form can be defined by that order.

Definition 8 (ordering of Boolean functions): Let the
signature 𝑠 be a one-to-one relationship between 𝐹𝑛 and a strict
totally ordered co-domain, such as a subset of integer or vector,
a strict total order can be defined on 𝐹𝑛 based on 𝑠: ∀𝑓, 𝑔 ∈ 𝐹𝑛,
𝑓 <𝑠 𝑔 iff 𝑠(𝑓) < 𝑠(𝑔).

A strict totally ordered set S has a unique minimum element,
denoted as min(S), i.e. min(𝑆) ∈ 𝑆, ∀𝑎 ∈ 𝑆, min(𝑆) ≤ 𝑎.

Theorem 2: When a strict total order is defined on 𝐹𝑛, the
minimum element of [𝑓] is a canonical form of 𝑓.

Proof: Examine the two conditions of the canonical form:

1) According to Definition 8, min ([𝑓]) ∈ [𝑓].

2) Since ∀𝑔 ∈ [𝑓], [𝑔] = [𝑓] , the following is true:
 (𝑔) = min([𝑔]) = min([𝑓]) = (𝑓) ∎

Various signatures are used for computing a canonical form,
such as the truth table [10][11], the satisfy count of cofactors
[13][14], spectral coefficients [12][14], and specific binary cost
[21].

B. Cofactor Signature

The cofactor signature composed of the satisfy counts of
cofactors is a well-known signature of Boolean functions, which
is adopted in several classification algorithms [2][11][13][15].
Reference [13] defines an NPN canonical form based on the
cofactor signature.

The cofactor signature is closely related to the truth table.
Several heuristic rules have been proposed to compute the truth
table based NPN canonical form, i.e., the function in the NPN
equivalence class with the minimum truth table [2][15].

Rule 1 (the output polarity): For a Boolean function 𝑓 with
n input variables, the polarity of the canonical form is

determined by the satisfy count of 𝑓. If |𝑓| < |𝑓|̅, or equally
|𝑓| < 2𝑛−1 , the polarity is positive; if |𝑓| > |𝑓|̅ , or equally
|𝑓| > 2𝑛−1, the polarity is negative; if 𝑓 is balanced, the polarity
is not determined.

Rule 2 (the phase of input variables): The phase of each
input variable in the canonical form is determined by the satisfy

count of the cofactor with respect to that variable. If |𝑓𝑥𝑖
| < |𝑓𝑥𝑖̅̅ ̅|,

or equally |𝑓𝑥𝑖
| < |𝑓| 2⁄ , the phase of 𝑥𝑖 is positive; if |𝑓𝑥𝑖

| >

|𝑓𝑥𝑖̅̅ ̅|, or equally |𝑓𝑥𝑖
| > |𝑓| 2⁄ , the phase of 𝑥𝑖 is negative; if 𝑥𝑖

is balanced, the phase is not determined.

Rule 3 (the ordering of input variables): After the phases
of input variables are assigned, their order is determined by the
ascending order of the satisfy count of the cofactors with respect
to each variable.

These three rules are heuristic, and may not obtain the
canonical form with the minimum truth table. However, they can
produce the function with the minimum signature vector
composed of the satisfy count of the function and the satisfy
counts of the cofactors with respect to each variable, i.e.

(|𝑓|, |𝑓𝑥1
|, |𝑓𝑥2

|, … , |𝑓𝑥𝑛
|). A new canonical form combining the

cofactor signatures and the truth table can be defined to make
these rules valid.

C. Hybrid Canonical Form

The proposed hybrid canonical form uses the cofactor
signature providing the general information about the function,
and the truth table providing the exact information.

Definition 9: The hybrid signature vector for a function 𝑓,
denoted by 𝐻(𝑓), is a vector composed of the satisfy count of
the function and the satisfy counts of the cofactors with respect
to each variable, followed by the bits of the truth table, i.e.

𝐻(𝑓) =
(|𝑓|, |𝑓𝑥1

|, |𝑓𝑥2
|, … , |𝑓𝑥𝑛

|, 𝑓(𝑋(2𝑛−1)), … , 𝑓(𝑋(1)), 𝑓(𝑋(0))).

Theorem 3: For a Boolean function 𝑓 with n input variables,
its hybrid signature vector 𝐻(𝑓) uniquely and completely
specifies function 𝑓.

Proof: The truth table part of the hybrid signature vector
uniquely and completely specifies function 𝑓 , the cofactor
signature part can be computed from the truth table. ∎

The signature vectors of different functions can be compared
via the lexicographic order, which is a strict total order.
According to Theorem 2, an NPN canonical form can be defined
using 𝐻(𝑓).

Definition 10: The hybrid canonical form of a function 𝑓 is
the function in the NPN equivalence class [𝑓] with the minimum
hybrid signature vector.

In the hybrid canonical form, the cofactor signature takes
precedence over the truth table. It is used to determine the phase
and the order of each input variables. Any other signatures that
can distinguish input variables, such as the row sums used in
[11], can be merged into the canonical form definition. In this
paper, only the cofactor signature is used.

D. Variable Symmetry and Canonical Form

As described in Section III, the input variables of a function
can be partitioned into symmetric classes. The variables in a
symmetric class have the same properties. During the canonical
form computation, a symmetric class is handled as a single
variable, resulting in the dramatic reduction of the complexity of

the algorithm. This method was adopted in several algorithms
[13]-[15], but the correctness is not proven.

Actually, this method is invalid for the spectrum based
canonical form used in [13] and [14], because it neglects the
higher-order coefficients among the variables in a symmetric
class. However, the canonical form can be redefined to make this
method feasible. The following theorem shows that the variable
grouping method can be applied to all the signature based
canonical form defined by Theorem 2.

Definition 11: A Boolean function 𝑓 is symmetry aggregate
if all of its symmetric variables are placed in adjacent positions
within a group in the input variable vector.

For example, function 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = 𝑥1𝑥2̅̅ ̅𝑥3 +
𝑥4 + 𝑥5𝑥6 is symmetry aggregate, because variables in both
symmetric classes[𝑥1, 𝑥2, 𝑥3] and [𝑥5, 𝑥6] are placed in adjacent
positions in the input variable vector. While 𝑓2(𝑥1,
𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = 𝑥1𝑥2̅̅ ̅𝑥4 + 𝑥3 + 𝑥5𝑥6 is not symmetry
aggregate, because the variables in symmetric group [𝑥1, 𝑥2, 𝑥4]
are separated in the input variable vector.

Definition 12: The symmetry aggregate equivalence set of
a Boolean function 𝑓 , denoted by [𝑓]𝑆 , is the set of the
symmetry aggregate functions in the NPN equivalence class of
𝑓, i.e. [𝑓]𝑆 = {ℎ | ℎ ∈ [𝑓], ℎ is symmetry aggregate }.

Theorem 4: When a strict total order is defined on 𝐹𝑛, the
minimum element of [𝑓]𝑆 , denoted by 𝑆(𝑓) , is a NPN
canonical form of 𝑓.

Proof: Examine the two conditions of the canonical form:

1) According to Definition 8 and Definition 12, min ([𝑓]𝑆) ∈
[𝑓]𝑆 ∈ [𝑓].

2) It is true that ∀𝑔 ∈ [𝑓] , [𝑓] = [𝑔] . According to
Definition 12, [𝑓]𝑆 = [𝑔]𝑆 , therefore 𝑆(𝑔) = min([𝑔]𝑆) =
min([𝑓]𝑆) = 𝑆(𝑓) ∎

If the canonical form computation algorithm groups
symmetric variables together, the output result of the algorithm
is a symmetry aggregate function, which is the symmetry
aggregate canonical form defined in Theorem 4. The proposed
algorithm introduced in Section V deal with the symmetry
aggregate hybrid canonical form defined via the hybrid signature
vector.

Theorem 4 show that the canonical form can be redefined
according to the canonical form computing algorithm. This
provides more freedom for the algorithm design.

V. COMPUTING THE CANONICAL FORM

A. Basic Canonical Form Algorithm

Given a Boolean function 𝑓 , the proposed algorithm
computes an exact NPN canonical form or a semi-canonical
form by the hybrid signature vector, according to certain
threshold. The algorithm is organized into seven steps, as
described below.

Algorithm 1: Compute the NPN canonical form

Input: Boolean function 𝑓 with n input variables

Output: canonical form (𝑓) or semi-canonical form ′(𝑓)

1: Decide the polarity of the output.

2: Decide the phases of input variables.

3: Reorder and group the input variables by the cofactor

signature.

4: Detect variable symmetry and group symmetric

variables.

5: Estimate the cost of the exhaustive enumeration.

6: If the cost is larger than the enumeration threshold, do

the simple enumeration which generates ′(𝑓),

7: Else do the exhaustive enumeration which generates

(𝑓).

In Step 1, the output polarity is determined according to Rule
1 described in Section IV-B. Negate the function if the output
polarity is negative. If 𝑓 is balanced, the polarity is undecided,
and the subsequent steps of the algorithm should use both
positive and negative polarities, and the resulting function with
the smaller truth table is returned.

In Step 2, the input phase assignment of each variable is
performed according to Rule 2. Negate the variables whose
phase are negative. Recalculate the cofactor signature if
necessary.

In Step 3, based on Rule 3, the input variables are reordered

such that |𝑓𝑥1
| ≤ |𝑓𝑥2

| ≤ … ≤ |𝑓𝑥𝑛
| . Then the variables are

grouped into groups 𝐺1, 𝐺2, … , 𝐺𝑘 by the satisfy count of the
cofactors with respect to each variable. Variables with the same
satisfy count are in the same group. If 𝑓 contains balanced
variables, all of them are grouped in the last group 𝐺𝑘 . This
group is called a balanced group.

In Step 4, the variables within each group are checked for
symmetry, and are divided into symmetric classes. If the group
is balanced, the symmetric relation can be NE-symmetry, E-
symmetry or multiform symmetry. If E-symmetry is detected,
negate one variable to convert the symmetric relation into NE-
symmetry. If the group is not balanced, only NE-symmetry need
to be checked.

Then higher-order symmetries are detected, and the lower-
order symmetric classes are merged into higher-order symmetric
classes.

After Step 4, the input variables are grouped into several
groups, and each group is divided into several symmetric classes.

i.e., 𝐺1 = (𝐶1, 𝐶2, … , 𝐶𝑚1
), 𝐺2 = (𝐶𝑚1+1, 𝐶𝑚1+2, … , 𝐶𝑚2

), …,

𝐺𝑘 = (𝐶𝑚𝑘−1+1, 𝐶𝑚𝑘−1+2, … , 𝐶𝑚) , 1 ≤ 𝑚 ≤ 𝑘, 1 < 𝑚1 <
𝑚2 < ⋯ < 𝑚𝑘−1 < 𝑚. Each symmetric class 𝐶𝑖 contains one
or more symmetric variable.

In Step 5, three factors are used to estimate the cost of the
exhaustive enumeration. 𝑐𝑝 = 𝑙𝑛 (𝑚1! (𝑚2 − 𝑚1)! … (𝑚 −
𝑚𝑘−1)!), represents the permutation cost; 𝑐𝑛 =the number of
balanced variables, represents the negation cost; 𝑐𝑡 = 𝑛 (the
number of input variables), represents the truth table
manipulating cost.

We use the logarithm of the exhaustive enumeration runtime
as the enumeration cost, and assume it is a linear combination of
cp, 𝑐𝑛 and 𝑐𝑡 . We recorded cp, 𝑐𝑛 , 𝑐𝑡 and the runtime of each

function in the experiment, and computed the coefficients via
linear regression.

Step 6 is a fast greedy enumeration method introduced by
Huang et al. [15]. Adjacent symmetric classes in each group are
swapped and flipped. Totally 8 transformations are considered

(𝑎𝑏, 𝑎𝑏̅, 𝑎̅𝑏, 𝑎𝑏̅̅ ̅, 𝑏𝑎, 𝑏𝑎̅, 𝑏̅𝑎, 𝑏𝑎̅̅ ̅) if the group is balanced.
Otherwise only two transformations are considered (𝑎𝑏, 𝑏𝑎) .
The transformation leading to the smallest truth table is chosen.
This procedure is repeated until no improvement produced. This
step generates a semi-canonical form.

Step 7 exhaustively enumerate all the different
transformations, and save the minimum truth table as the
canonical form. Totally 𝑚1! (𝑚2 − 𝑚1)! … (𝑚 − 𝑚𝑘−1)!
different permutations need to be enumerated. If 𝐺𝑘 .is not
balanced, the phase of all the variables are determined.
Otherwise, 2𝑚−𝑚𝑘−1 different phase assignment need to be
enumerated. This step generates an exact canonical form.

Instead of the recursive enumeration used in many previous
algorithms [13]-[15], we use iterative enumeration. By using
Johnson-Trotter permutation algorithm [22] and Gray code, each
enumeration step only swap one pair of adjacent symmetric
classes, or flip one symmetric class. Thus the transformation cost
during enumeration is minimized.

The algorithm keeps a record of the first-level multiform
symmetric class. When performing phase enumeration, only one
variable in the class need to be negated instead of all the

variables in the class, according to Theorem 1.

B. Hierarchical Canonical Form Algorithm

Petkovska et al. [17] introduced a hierarchical method,
which reuse the intermediate results to speed up the
classification process. This method can be used with the
algorithm described in last section.

The hierarchical adjustable algorithm has three intermediate
levels, and maintains a hash map in each level, which maps the
intermediate result to the final canonical form. This allows the
algorithm to finish earlier as soon as the intermediate result hits
the hash map. The first level is after deciding the phases of
variables (Step 2). The second level is after grouping symmetric
variables (Step 4). The simple enumeration (Step 6) executes
unconditionally, and its result is used as the key of the third level
hash map.

C. Canonical Example

Given a function 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = (𝑥1𝑥2 +
𝑥3𝑥4̅̅ ̅)(𝑥5𝑥6) , we have the cofactor signature vector

(|𝑓|, |𝑓𝑥1
|, |𝑓𝑥2

|, |𝑓𝑥3
|, |𝑓𝑥4

|, |𝑓𝑥5
|, |𝑓𝑥6

|) = (14, 4,4,4,10,7,7) .

Since |𝑓|<32, the output polarity is positive.

Step 2 perform the phase assignment. Because |𝑓𝑥1
| =

 |𝑓𝑥2
| = |𝑓𝑥3

| <
|𝑓|

2
, |𝑓𝑥4

| >
|𝑓|

2
, |𝑓𝑥5

| = |𝑓𝑥6
| =

|𝑓|

2
, the phase of

𝑥1, 𝑥2 and 𝑥3 is positive, the phase of 𝑥4 is negative. 𝑥5 and 𝑥6

are balanced. Then, the cofactor signature vector is recalculated

as (|𝑓|, |𝑓𝑥1
|, |𝑓𝑥2

|, |𝑓𝑥3
|, |𝑓𝑥4̅̅̅̅ |, |𝑓𝑥5

|, |𝑓𝑥6
|) = (14, 4,4,4,4,7,7).

In Step 3, the variables are grouped into two group, 𝐺1 =
(𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝐺2 = (𝑥5, 𝑥6), where 𝐺2 is balanced.

In Step 4, the variable symmetry is detected, and the input

variables are divided into three symmetry classes: 𝐶1 = [𝑥1,
𝑥2], 𝐶2 = [𝑥3, 𝑥4] and 𝐶3 = 〈𝑥5, 𝑥6〉. Note that variable 𝑥4

has been negated in Step 2. Then higher-order symmetry is

detected, 𝐶1, and 𝐶2 are merged into a second-order symmetry

class 𝐶12 = [[𝑥1, 𝑥2], [𝑥3, 𝑥4]].
After Step 4, the structure of input variables is 𝐺1 =

([𝑥1, 𝑥2, 𝑥3, 𝑥4]), 𝐺2 = (〈𝑥5, 𝑥6〉).

Each of the two groups only contains one symmetric class,

so no permutation needs to be performed. Because 𝐺2 is

balanced, 𝐶3 needs to be flipped. As 𝐶3 is a multiform class,

only on variable in 𝐶3 is to be negated.

In Step 7, two transformations are enumerated. The functions

after transformation is 𝑓1 = (𝑥1𝑥2 + 𝑥3𝑥4)(𝑥5𝑥6) , 𝑓2 =
(𝑥1𝑥2 + 𝑥3𝑥4)(𝑥5̅̅ ̅𝑥6) . The truth table 𝑇(𝑓1) = 0000 F888

F888 0000H, 𝑇(𝑓2) = F888 0000 0000 F888H. As 𝑇(𝑓1) <
 𝑇(𝑓2), the canonical form of 𝑓 is (𝑓) = 𝑓1.

VI. EXPERIMENTAL RESULT

Petkovska’s hierarchical algorithms [17] are the state-of-the-
art classification algorithms, which include the hierarchical
algorithm HierH, and the exact algorithm HierE2. HierH is
implemented in ABC [23] (command “testnpn -A 7”), and the
implementation of HierE2 is not publicly available. Therefore,
we use the results from [17], with compensation for the
difference of the test environment. The proposed hierarchical
adjustable algorithm, referred as HAdj, is also implemented in
ABC. All experiments ran on a computer with a 3.1GHz Intel
Core i5 CPU and 8 GB main memory.

The benchmarks used in the experiments are the same used
in [15] and [17]. They are Boolean functions divided into several
test suites by their DSD properties [24] (full DSD, partial DSD,
and non-DSD), and by the number of input variables.

Table I compares the heuristic classification results of HAdj
with HierH. The two columns for HierH are the number of
classes it produced, and its runtime. For HAdj, the results under
four different enumeration thresholds are presented. In addition

to the number of classes produced, and the runtime, the exact
ratio is shown, which is the ratio of the functions, for which
exhaustive enumeration was performed, to the total number of
functions.

A heuristic classification performs better if it generates fewer
classes, that is, closer to the exact result. The pure heuristic
version of HAdj (Threshold = 0) has similar classification result
to HierH. It is slightly worse than HierH for full DSD functions,
and is slightly better than HierH for partial DSD and non-DSD
functions. HAdj is about 1.5x slower than HierH. Setting a
proper enumeration threshold can improve the classification
quality significantly with small runtime penalty. Raising the
enumeration threshold increases the exact ratio further, and
results in better classification quality, but the runtime grows
rapidly

TABLE II. CLASSIFICATION RESULTS OF EXACT ALGORITHMS

DSD

Property

Vars

Funcs

Classes

Runtime(s)

Speedup HierE2 HAdj

Full

6 1M 191 0.17 0.07 2.38

8 1M 1274 49.45 0.20 247.25
10 100K 1707 7691.50 0.63 12208.73

12 100K 3138 - 1.62 -

14 10K 882 - 98.82 -
16 10K 1041 - 550.09 -

Partial

6 1M 2103 0.42 0.10 4.17
8 1M 13923 113.56 5.03 22.58

10 100K 6494 5253.51 8.58 612.30

12 100K 8396 - 923.42 -

14 10K 2447 - 13h -
16 10K - - >6kh* -

Non

6 1M 1673 0.22 0.08 2.71
8 1M 2836 16.01 1.83 8.75

10 100K 1904 3714.13 1272.60 2.92

12 100K - - >100h* -

14 10K - - >100kh* -
16 10K - - >500h* -

Geomean 31.27

 *estimated time

Table II compares the exact classification result of HAdj and
HierE2. HierE2 is not scalable enough for classifying functions
with more than 10 input variables. While HAdj can classify full
DSD functions with 16 inputs and partial DSD functions with 12

TABLE I. COMPARISON OF HEURISTIC CLASSIFICATION ALGORITHMS

DSD
Property

Vars

Funcs

HierH HAdj (Number of classes / Runtime(s) / Exact ratio(%))

#Classes Time Threshold = 0 Threshold = 25 Threshold = 30 Threshold = 35

Full

6 1M 204 0.06 215 0.07 0 191 0.07 100 191 0.07 100 191 0.07 100

8 1M 1344 0.15 1393 0.18 0 1274 0.20 99.996 1274 0.22 100 1274 0.21 100

10 100K 1723 0.05 1729 0.08 0 1713 0.09 99.7 1708 0.09 99.96 1707 0.14 99.999

12 100K 3157 0.19 3154 0.28 0 3145 0.29 99.6 3140 0.31 99.8 3139 0.42 99.9

14 10K 891 0.13 898 0.24 0 893 0.24 92.9 887 0.32 95.7 883 0.88 98.8

16 10K 1057 0.49 1059 0.82 0 1056 0.85 94.6 1055 0.87 95.6 1055 1.05 96.4

Partial

6 1M 2254 0.07 2258 0.09 0 2106 0.09 99.99 2103 0.10 100 2103 0.10 100

8 1M 14270 0.18 14268 0.28 0 13944 0.36 97.9 13934 0.63 99.5 13923 2.25 99.99

10 100K 6620 0.07 6593 0.12 0 6520 0.15 96.4 6510 0.22 98.7 6502 1.06 99.6

12 100K 8545 0.23 8482 0.40 0 8430 0.50 86.9 8419 0.74 94.6 8413 1.87 98.4

14 10K 2482 0.27 2472 0.49 0 2460 0.55 83.9 2457 0.76 90.3 2454 2.56 94.4

16 10K 3110 1.19 3101 2.49 0 3089 2.72 77.4 3086 3.04 84.6 3082 5.99 89.0

Non

6 1M 1748 0.04 1744 0.05 0 1674 0.06 99.99 1673 0.06 100 1673 0.06 100

8 1M 2949 0.09 2936 0.10 0 2857 0.15 98.3 2841 0.28 99.7 2836 0.73 99.9

10 100K 2016 0.03 2019 0.05 0 1954 0.10 63.8 1924 0.26 75.7 1920 1.11 89.9

12 100K 1409 0.10 1393 0.13 0 1364 0.17 61.8 1341 0.52 82.4 1327 3.21 91.5

14 10K 980 0.09 972 0.16 0 968 0.18 42.3 964 0.53 56.6 957 3.64 74.9

16 10K 282 0.16 281 0.24 0 281 0.26 24.6 281 0.30 41.3 281 0.87 56.9

Geomean 0.13 0.19 0.22 0.32 0.72

inputs in an affordable runtime. On average, HAdj is 31 times
faster than HierE2 for classifying functions with no more than
10 input. HAdj still unable to classify the partial DSD test suit
with 16 inputs, and the non-DSD test suits with more than 10
inputs. The runtimes of classifying these test suits shown in
Table II are estimated using the enumeration cost in Step 5 of
the algorithm.

Analyzing the runtime cost of individual functions shows
that, for exact classification, a few outlier functions dominate the
runtime. As an example, for the partial DSD test suit with 14
inputs, the total classification time is 13.1 hours. Among the
10000 functions in the test suit, 2472 of them are processed for
exhaustive enumeration, and the other functions are skipped by
the hierarchical mechanism. The top 2 difficult functions cost
9.8 hours, and the next 10 functions cost 2.9 hours. The total
runtime of the other 2460 functions is less than 30 minutes.

TABLE III. RUNTIME COMPARISON OF HEURISTIC AND EXACT

CLASSIFICATION

DSD

Property

Vars

Heuristic

Time(s)

Exact

Time(s)

Runtime

Ratio(%)

Function

Ratio(%)

Full

10 0.14 0.20 70.0 99.999

12 0.42 0.63 66.7 99.9

14 0.88 1.62 54.3 98.8

16 1.05 98.82 1.1 96.4

Partial

8 2.25 5.03 44.7 99.99

10 1.06 8.58 12.4 99.6

12 1.87 923.42 0.2 98.4

14 2.56 13h 0.005 94.4

Non
8 0.73 1.83 39.9 99.9

10 1.11 1272.60 0.1 89.9

Comparing the exact runtime to the heuristic runtime
(threshold = 35) of HAdj also shows the disproportionate
runtime of a few functions, as shown in Table III. Take the
partial DSD test suit with 12 inputs as an example, the heuristic
classification generates 98.4% exact canonical form, and only
cost 0.2% of the full exact runtime. In other words, for exact
classification, 1.6% of the functions occupy more than 99.8% of
the runtime. This is reason for HAdj algorithm perform effective
heuristic classification. Most of the functions can be processed
exactly, only a few difficult functions are processed by the fast
heuristic method.

VII. CONCLUSION

This paper presents an adjustable NPN classification
algorithm, which can be either exact or heuristic. As a heuristic
algorithm, the proposed algorithm can be adjusted to make a
compromise between the runtime and the classification quality.
As an exact classification algorithm, the proposed algorithm is
faster than state-of-the-art. The main reason of the speedup is
that the algorithm takes full advantage of various variable
symmetries, especially the proper manipulation of the multiform
symmetric groups, which is neglected by many of the existing
classification methods.

Exact classification of non-DSD functions with more than 10
inputs is still a difficult problem, which we plan to address in the
future.

REFERENCES

[1] A. Kennings, A. Mishchenko, K. Vorwerk, V. Pevzner, and A.

Kundu,“Efficient FPGA resynthesis using precomputed LUT structures”,
Proc. FPL 2010, pp. 532–37.

[2] W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis”,
Proc. ICCAD 2012, pp. 597–604.

[3] M. Soeken, L. G. Amarù, P. Gaillardon, and G. De Micheli, “Optimizing
majority-inverter graphs with functional hashing” , Proc. DATE. Dresden,
Mar. 2016.

[4] A. Kennings, A. Mishchenko, K. Vorwerk, V. Pevzner, and A. Kundu,
“Generating efficient libraries for use in FPGA resynthesis lgorithms”,
Proc. IWLS. 2010, pp. 147-154.

[5] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping”, IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst 25(12), 2894–903 (2006)

[6] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts”, Proc. ICCAD 2007, pp. 354–
61.

[7] A. Mishchenko, R. Brayton, W. Feng, and J. W. Greene, “Technology
mapping into general programmable cells”, Proc. FPGA 2015, pp. 70–73.

[8] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen,
"Mapping into LUT structures", Proc. DATE'12, pp. 1579-1584.

[9] W. Feng, J. W. Greene, and A. Mishchenko, ”Improving FPGA
performance with a S44 LUT structure”. Proc. FPGA 2018, pp. 61-66.

[10] U. Hinsberger and R. Kolla, “Boolean matching for large libraries”, Proc.
DAC1998, pp. 206–211.

[11] D. Chai and A. Kuehlmann, “Building a better Boolean matcher and
symmetry detector”, Proc. DATE 2016, pp.1079–1084.

[12] S. W. Golomb, “On the classification of Boolean functions”, IRE Trans.
Circuit Theory, May 1959, vol. CT-6, pp. 176-186..

[13] A. Abdollahi and M. Pedram, “Symmetry detection and Boolean
matching utilizing a signature-based canonical form of Boolean
functions”, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
2008, 27(6), pp. 1128-1137.

[14] G. Agosta, F. Bruschi, G. Pelosi, and D. Sciuto, “A trasnform-parametric
approch to Boolean matching”, IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., 2009, 28(6), pp. 805-817.

[15] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast Boolean
matching based on NPN classification”, Proc. ICFPT 2013, pp. 310–313.

[16] C.C. Tsai, M. Marek-Sadowska and D. Gatlin. “Boolean function
classification via fixed polarity Reed-Muller forms”, IEEE Transactions
on Computers, 1997 , 46 (2) , pp.173-186.

[17] A. Petkovska, M. Soeken, G. De Micheli, P. Ienne, and A. Mishchenko,
“Fast hierarchical NPN classification” , Proc. FPL 2016. pp. 61-64.

[18] C.C. Tsai and M. Marek-Sadowaska. “Generalized Reed-Muller Forms as
a Tool to Detect Symmetries”, IEEE Transactions on Computers, 1996,
45 (1), pp. 33-40.

[19] N. Kettle and A. King, “An anytime symmetry detection algorithm for
ROBDDs”, Proc. ASP-DAC 2006, pp. 24-27.

[20] V.N. Kravets and K.A. Sakallah. “Generalized symmetries in Boolean
functions”, ICCAD 2000, pp. 526-532.

[21] J. Ciric and C. Sechen, “Efficient canonical form for Boolean matching
of complex functions in large libraries”, IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., 2003, 22(5), pp. 535–544.

[22] Selmer M. Johnson. “Generation of permutations by adjacent
transposition”, Math. Comp. 17 (1963), 282-285.

[23] Berkeley Logic Synthesis and Verification Group. “ABC: A System for
Sequential Synthesis and Verification”, [Online]. http://www-cad.eecs.
berkeley.edu/~alanmi/abc.

[24] R. Ashenhurst, “The decomposition of switching functions,” in
Proceedings of the International Symposium on the Theory of Switching,
Cambridge, Mass., Apr. 1957, pp. 74–116.

	Chapman University
	Chapman University Digital Commons
	8-2018

	Fast Adjustable NPN Classification Using Generalized Symmetries
	Xuegong Zhou
	Lingli Wang
	Peiyi Zhao
	Alan Mishchenko
	Recommended Citation

	Fast Adjustable NPN Classification Using Generalized Symmetries
	Comments
	Copyright

	Paper Title (use style: paper title)

