1,659 research outputs found

    Cuts for circular proofs: semantics and cut-elimination

    Get PDF
    One of the authors introduced in [Santocanale, FoSSaCS, 2002] a calculus of circular proofs for studying the computability arising from the following categorical operations: finite products, finite coproducts, initial algebras, final coalgebras. The calculus presented [Santocanale, FoSSaCS, 2002] is cut-free; even if sound and complete for provability, it lacked an important property for the semantics of proofs, namely fullness w.r.t. the class of intended categorical models (called mu-bicomplete categories in [Santocanale, ITA, 2002]). In this paper we fix this problem by adding the cut rule to the calculus and by modifying accordingly the syntactical constraint ensuring soundness of proofs. The enhanced proof system fully represents arrows of the canonical model (a free mu-bicomplete category). We also describe a cut-elimination procedure as a a model of computation arising from the above mentioned categorical operations. The procedure constructs a cut-free proof-tree with possibly infinite branches out of a finite circular proof with cuts

    General Recursion via Coinductive Types

    Full text link
    A fertile field of research in theoretical computer science investigates the representation of general recursive functions in intensional type theories. Among the most successful approaches are: the use of wellfounded relations, implementation of operational semantics, formalization of domain theory, and inductive definition of domain predicates. Here, a different solution is proposed: exploiting coinductive types to model infinite computations. To every type A we associate a type of partial elements Partial(A), coinductively generated by two constructors: the first, return(a) just returns an element a:A; the second, step(x), adds a computation step to a recursive element x:Partial(A). We show how this simple device is sufficient to formalize all recursive functions between two given types. It allows the definition of fixed points of finitary, that is, continuous, operators. We will compare this approach to different ones from the literature. Finally, we mention that the formalization, with appropriate structural maps, defines a strong monad.Comment: 28 page

    Introduction to Categories and Categorical Logic

    Get PDF
    The aim of these notes is to provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The notes are based on a lecture course given at Oxford over the past few years. They contain numerous exercises, and hopefully will prove useful for self-study by those seeking a first introduction to the subject, with fairly minimal prerequisites. The coverage is by no means comprehensive, but should provide a good basis for further study; a guide to further reading is included. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions. An Appendix contains a summary of what we will need, and it may be useful to review this first. In addition, some prior exposure to abstract algebra - vector spaces and linear maps, or groups and group homomorphisms - would be helpful.Comment: 96 page

    Phase Semantics for Linear Logic with Least and Greatest Fixed Points

    Get PDF
    The truth semantics of linear logic (i.e. phase semantics) is often overlooked despite having a wide range of applications and deep connections with several denotational semantics. In phase semantics, one is concerned about the provability of formulas rather than the contents of their proofs (or refutations). Linear logic equipped with the least and greatest fixpoint operators (?MALL) has been an active field of research for the past one and a half decades. Various proof systems are known viz. finitary and non-wellfounded, based on explicit and implicit (co)induction respectively. In this paper, we extend the phase semantics of multiplicative additive linear logic (a.k.a. MALL) to ?MALL with explicit (co)induction (i.e. ?MALL^{ind}). We introduce a Tait-style system for ?MALL called ?MALL_? where proofs are wellfounded but potentially infinitely branching. We study its phase semantics and prove that it does not have the finite model property

    Practical Subtyping for System F with Sized (Co-)Induction

    Full text link
    We present a rich type system with subtyping for an extension of System F. Our type constructors include sum and product types, universal and existential quantifiers, inductive and coinductive types. The latter two size annotations allowing the preservation of size invariants. For example it is possible to derive the termination of the quicksort by showing that partitioning a list does not increase its size. The system deals with complex programs involving mixed induction and coinduction, or even mixed (co-)induction and polymorphism (as for Scott-encoded datatypes). One of the key ideas is to completely separate the induction on sizes from the notion of recursive programs. We use the size change principle to check that the proof is well-founded, not that the program terminates. Termination is obtained by a strong normalization proof. Another key idea is the use symbolic witnesses to handle quantifiers of all sorts. To demonstrate the practicality of our system, we provide an implementation that accepts all the examples discussed in the paper and much more

    A correspondence between rooted planar maps and normal planar lambda terms

    Get PDF
    A rooted planar map is a connected graph embedded in the 2-sphere, with one edge marked and assigned an orientation. A term of the pure lambda calculus is said to be linear if every variable is used exactly once, normal if it contains no beta-redexes, and planar if it is linear and the use of variables moreover follows a deterministic stack discipline. We begin by showing that the sequence counting normal planar lambda terms by a natural notion of size coincides with the sequence (originally computed by Tutte) counting rooted planar maps by number of edges. Next, we explain how to apply the machinery of string diagrams to derive a graphical language for normal planar lambda terms, extracted from the semantics of linear lambda calculus in symmetric monoidal closed categories equipped with a linear reflexive object or a linear reflexive pair. Finally, our main result is a size-preserving bijection between rooted planar maps and normal planar lambda terms, which we establish by explaining how Tutte decomposition of rooted planar maps (into vertex maps, maps with an isthmic root, and maps with a non-isthmic root) may be naturally replayed in linear lambda calculus, as certain surgeries on the string diagrams of normal planar lambda terms.Comment: Corrected title field in metadat

    The Guarded Lambda-Calculus: Programming and Reasoning with Guarded Recursion for Coinductive Types

    Full text link
    We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal functions. We give a call-by-name operational semantics for the calculus, and define adequate denotational semantics in the topos of trees. The adequacy proof entails that the evaluation of a program always terminates. We introduce a program logic with L\"ob induction for reasoning about the contextual equivalence of programs. We demonstrate the expressiveness of the calculus by showing the definability of solutions to Rutten's behavioural differential equations.Comment: Accepted to Logical Methods in Computer Science special issue on the 18th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2015
    • …
    corecore