1,305 research outputs found

    Automatic Emphysema Detection using Weakly Labeled HRCT Lung Images

    Get PDF
    A method for automatically quantifying emphysema regions using High-Resolution Computed Tomography (HRCT) scans of patients with chronic obstructive pulmonary disease (COPD) that does not require manually annotated scans for training is presented. HRCT scans of controls and of COPD patients with diverse disease severity are acquired at two different centers. Textural features from co-occurrence matrices and Gaussian filter banks are used to characterize the lung parenchyma in the scans. Two robust versions of multiple instance learning (MIL) classifiers, miSVM and MILES, are investigated. The classifiers are trained with the weak labels extracted from the forced expiratory volume in one minute (FEV1_1) and diffusing capacity of the lungs for carbon monoxide (DLCO). At test time, the classifiers output a patient label indicating overall COPD diagnosis and local labels indicating the presence of emphysema. The classifier performance is compared with manual annotations by two radiologists, a classical density based method, and pulmonary function tests (PFTs). The miSVM classifier performed better than MILES on both patient and emphysema classification. The classifier has a stronger correlation with PFT than the density based method, the percentage of emphysema in the intersection of annotations from both radiologists, and the percentage of emphysema annotated by one of the radiologists. The correlation between the classifier and the PFT is only outperformed by the second radiologist. The method is therefore promising for facilitating assessment of emphysema and reducing inter-observer variability.Comment: Accepted at PLoS ON

    A comparative analysis of chronic obstructive pulmonary disease using machine learning, and deep learning

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a general clinical issue in numerous countries considered the fifth reason for inability and the third reason for mortality on a global scale within 2021. From recent reviews, a deep convolutional neural network (CNN) is used in the primary analysis of the deadly COPD, which uses the computed tomography (CT) images procured from the deep learning tools. Detection and analysis of COPD using several image processing techniques, deep learning models, and machine learning models are notable contributions to this review. This research aims to cover the detailed findings on pulmonary diseases or lung diseases, their causes, and symptoms, which will help treat infections with high performance and a swift response. The articles selected have more than 80% accuracy and are tabulated and analyzed for sensitivity, specificity, and area under the curve (AUC) using different methodologies. This research focuses on the various tools and techniques used in COPD analysis and eventually provides an overview of COPD with coronavirus disease 2019 (COVID-19) symptoms.

    Pattern Recognition-Based Analysis of COPD in CT

    Get PDF

    Noninvasive Imaging for the Assessment of Coronary Artery Disease

    Get PDF
    Noninvasive cardiac imaging is a cornerstone of the diagnostic work-up in patients with suspected coronary artery disease (CAD), cardiomyopathy, heart failure, and congenital heart disease. It is essential for the assessment of CAD from functional and anatomical perspectives, and is considered the gate-keeper to invasive coronary angiography. Cardiac tests include exercise electrocardiography, single photon emission computed tomography myocardial perfusion imaging, positron emission tomography myocardial perfusion imaging, stress echocardiography, coronary computed tomography angiography, and stress cardiac magnetic resonance. The wide range of imaging techniques is advantageous for the detection and management of cardiac diseases, and the implementation of preventive measures that can affect the long-term prognosis of these diseases. However, clinicians face a challenge when deciding which test is most appropriate for a given patient. Basic knowledge of each modality will facilitate the decision-making process in CAD assessment

    Danish study of Non-Invasive Testing in Coronary Artery Disease 3 (Dan-NICAD 3):study design of a controlled study on optimal diagnostic strategy

    Get PDF
    Introduction Current guideline recommend functional imaging for myocardial ischaemia if coronary CT angiography (CTA) has shown coronary artery disease (CAD) of uncertain functional significance. However, diagnostic accuracy of selective myocardial perfusion imaging after coronary CTA is currently unclear. The Danish study of Non-Invasive testing in Coronary Artery Disease 3 trial is designed to evaluate head to head the diagnostic accuracy of myocardial perfusion imaging with positron emission tomography (PET) using the tracers 82Rubidium (82Rb-PET) compared with oxygen-15 labelled water PET (15O-water-PET) in patients with symptoms of obstructive CAD and a coronary CT scan with suspected obstructive CAD.Methods and analysis This prospective, multicentre, cross-sectional study will include approximately 1000 symptomatic patients without previous CAD. Patients are included after referral to coronary CTA. All patients undergo a structured interview and blood is sampled for genetic and proteomic analysis and a coronary CTA. Patients with possible obstructive CAD at coronary CTA are examined with both 82Rb-PET, 15O-water-PET and invasive coronary angiography with three-vessel fractional flow reserve and thermodilution measurements of coronary flow reserve. After enrolment, patients are followed with Seattle Angina Questionnaires and follow-up PET scans in patients with an initially abnormal PET scan and for cardiovascular events in 10 years.Ethics and dissemination Ethical approval was obtained from Danish regional committee on health research ethics. Written informed consent will be provided by all study participants. Results of this study will be disseminated via articles in international peer-reviewed journal.Trial registration number NCT04707859

    Quantitative imaging analysis:challenges and potentials

    Get PDF

    Computed tomography for myocardial characterization in ischemic heart disease:a state-of-the-art review

    Get PDF
    This review provides an overview of the currently available computed tomography (CT) techniques for myocardial tissue characterization in ischemic heart disease, including CT perfusion and late iodine enhancement. CT myocardial perfusion imaging can be performed with static and dynamic protocols for the detection of ischemia and infarction using either single- or dual-energy CT modes. Late iodine enhancement may be used for the analysis of myocardial infarction. The accuracy of these CT techniques is highly dependent on the imaging protocol, including acquisition timing and contrast administration. Additionally, the options for qualitative and quantitative analysis and the accuracy of each technique are discussed

    Implementation of a 3D CNN for COPD classification

    Get PDF
    Segons les prediccions de la Organització Mundial de la Salut (OMS) pels voltants del 2030 la Malaltia Pulmonar Obstructiva Crònica (MPOC) es convertirá en la tercera causa de mort en tot el món. L’MPOC és una patologia que afecta a les vies respiratòries i als pulmons. Avui en dia esdevé crónica i incurable però, és una malaltia tractable i prevenible. Fins ara les proves de diagnòstic usades per a detectar l’MPOC es basen en l’espirometria, aquesta prova, tot i indicar el grau d’obstrucció al pas de l’aire que es produeix en els pulmons, sovint no és molt fiable. És per aquest motiu que s’estan començant a usar tècniques basades en algorismes de Deep Learning per a la classificaió més acurada d’aquesta patologia, basant-se en imatges tomogràfiques de pacients malalts d’MPOC. Les xarxes neuronals convolucionals en tres dimensions (3D-CNN) en són un exemple. A partir de les dades i les imatges obtingudes en l’estudi observacional d’ECLIPSE proporcionades per l’equip de recerca de BRGE de ISGlobal, s’implementa una 3D-CNN per a la classificació de pacients amb risc d’MPOC. Aquest treball té com a objectiu desenvolupar una recerca extensa sobre la recerca actual en aquest àmbit i proposa millores per a l’optimització i reducció del cost computacional d’una 3D-CNN per aquest cas d’estudi concret.Según las predicciones de la Organización Mundial de la Salud (OMS), para alrededor del 2030, la Enfermedad Pulmonar Obstructiva Crónica (EPOC) se convertirá en la tercera causa de muerte en todo el mundo. La EPOC es una enfermedad que afecta las vías respiratorias y los pulmones. En la actualidad, se considera crónica e incurable, pero es una enfermedad tratable y prevenible. Hasta ahora, las pruebas de diagnóstico utilizadas para detectar la EPOC se basan en la espirometría. Esta prueba, a pesar de indicar el grado de obstrucción en el flujo de aire que ocurre en los pulmones, a menudo no es muy confiable. Es por esta razón que se están empezando a utilizar técnicas basadas en algoritmos de Deep Learning para una clasificación más precisa de esta patología, utilizando imágenes tomográficas de pacientes enfermos de EPOC. Las redes neuronales convolucionales en tres dimensiones (3D-CNN) son un ejemplo de esto. A partir de los datos y las imágenes obtenidas en el estudio observacional ECLIPSE proporcionado por el equipo de investigación de BRGE de ISGlobal, se implementa una 3D-CNN para la clasificación de pacientes con riesgo de EPOC. Este trabajo tiene como objetivo desarrollar una investigación exhaustiva sobre la investigación actual en este campo y propone mejoras para la optimización y reducción del costo computacional de una 3D-CNN para este caso de estudio concreto.According to predictions by the World Health Organization (WHO), by around 2030, Chronic Obstructive Pulmonary Disease (COPD) will become the third leading cause of death worldwide. COPD is a condition that affects the respiratory tract and lungs. Currently, it is considered chronic and incurable, but it is a treatable and preventable disease. Up to now, diagnostic tests used to detect COPD have been based on spirometry. Despite indicating the degree of airflow obstruction in the lungs, this test is often not very reliable. That is why techniques based on Deep Learning algorithms are being increasingly used for more accurate classification of this pathology, based on tomographic images of COPD patients. Three-dimensional Convolutional Neural Networks (3D-CNN) are an example of such techniques. Based on the data and images obtained in the observational study called ECLIPSE, provided by the research team at BRGE of ISGlobal, a 3D-CNN is implemented for the classification of patients at risk of COPD. This work aims to conduct extensive research on the current state of research in this field and proposes improvements for the optimization and reduction of the computational cost of a 3D-CNN for this specific case study

    Quantitative CT analysis in ILD and use of artificial intelligence on imaging of ILD

    Get PDF
    Advances in computer technology over the past decade, particularly in the field of medical image analysis, have permitted the identification, characterisation and quantitation of abnormalities that can be used to diagnose disease or determine disease severity. On CT imaging performed in patients with ILD, deep-learning computer algorithms now demonstrate comparable performance with trained observers in the identification of a UIP pattern, which is associated with a poor prognosis in several fibrosing ILDs. Computer tools that quantify individual voxel-level CT features have also come of age and can predict mortality with greater power than visual CT analysis scores. As these tools become more established, they have the potential to improve the sensitivity with which minor degrees of disease progression are identified. Currently, PFTs are the gold standard measure used to assess clinical deterioration. However, the variation associated with pulmonary function measurements may mask the presence of small but genuine functional decline, which in the future could be confirmed by computer tools. The current chapter will describe the latest advances in quantitative CT analysis and deep learning as related to ILDs and suggest potential future directions for this rapidly advancing field
    • …
    corecore