3 research outputs found

    Waste Collection Vehicle Routing Problem Model with Multiple Trips, Time Windows, Split Delivery, Heterogeneous Fleet and Intermediate Facility

    Get PDF
    Waste Collection Vehicle Routing Problem (WCVRP) is one of the developments of a Vehicle Routing Problem, which can solve the route determination of transporting waste. This study aims to develop a model from WCVRP by adding characteristics such as split delivery, multiple trips, time windows, heterogeneous fleet, and intermediate facilities alongside an objective function to minimize costs and travel distance. Our model determines the route for transporting waste especially in Cakung District, East Jakarta. The additional characteristics are obtained by analyzing the characteristics of waste transportation in the area. The models are tested using dummy data to analyze the required computational time and route suitability. The models contribute to determining the route of transporting waste afterward. The WCVRP model has been successfully developed, conducted the numerical testing, and implemented with the actual characteristics such as split delivery, multiple trips, time windows, heterogeneous fleets, and intermediate facilities. The output has reached the global optimal for both dummy and real data

    A Branch-and-Cut-and-Price algorithm for the Multi-trip Separate Pickup and Delivery Problem with Time Windows at Customers and Facilities

    No full text
    We study the Multi-trip Separate Pickup and Delivery Problem with Time Windows at Customers and Facilities (MT-PDTWCF), arising in two-tiered city logistics systems. The first tier refers to the transportation between the city distribution centers, in the outskirts of the city, and intermediate facilities, while the second tier refers to the transportation of goods between the intermediate facilities and the (pickup and delivery) customers. We focus on the second tier, and consider that customers and facilities have time windows in which they can be visited. Waiting is possible at waiting stations for free or at customers and facilities at a given cost or penalty. Therefore, it is relevant to coordinate the arrivals of vehicles at facilities and customers with the corresponding time windows. The MT-PDTWCF calls for determining minimum (fixed, routing and waiting) cost multi-trip routes, for a given fleet of vehicles, to service separately pickup and delivery customers, while taking into account vehicle capacity and time windows both at customers and facilities. We propose the first exact algorithm for MT-PDTWCF, namely a Branch-and-Cut-and-Price algorithm. It is based on column generation, where the pricing problem is solved by a bi-directional dynamic programming algorithm designed to cope with the features of the problem. Subset-row and rounded capacity inequalities are adapted to deal with MT-PDTWCF and inserted in the Branch-and-Cut-and-Price algorithm. The performance of the proposed algorithm is tested on benchmark instances with up to 200 customers, showing its effectiveness

    Stochastic Service Network Design for Intermodal Freight Transportation

    Get PDF
    In view of the accelerating climate change, greenhouse gas emissions from freight transportation must be significantly reduced over the next decades. Intermodal transportation can make a significant contribution here. During the transportation process, different modes of transportation are combined, enabling a modal shift to environmentally friendly alternatives such as rail and inland waterway transportation. However, at the same time, the organization of several modes is more complex compared to the unimodal case (where, for example, only trucks are employed). In particular, an efficient management of uncertainties, such as fluctuating transportation demand volumes or delays, is required to realize low costs and transportation times, thereby ensuring the attractiveness of intermodal transportation for a further modal shift. Stochastic service network design can explicitly consider such uncertainities in the planning in order to increase the performance of intermodal transportation. Decisions for the network design as well as for the mode choice are defined by mathematical optimization models, which originate from operations research and include relevant uncertainities by stochastic parameters. As central research gap, this dissertation addresses important operational constraints and decision variables of real-life intermodal networks, which have not been considered in these models so far and, in consequence, strongly limit their application in everyday operations. The resulting research contribution are two new variants of stochastic service network design models: The "stochastic service network design with integrated vehicle routing problem" integrates corresponding routing problems for road vehicles into the planning of intermodal networks. This new variant ensures a cost- and delay-minimal mode choice in the case of uncertain transportation times. The "stochastic service network design with short-term schedule modifications" deals with modifications of intermodal transportation schedules in order to adapt them to fluctuating demand as best as possible. For both new model variants, heuristic solution methods are presented which can efficiently solve even large network instances. Extensive case studies with real-world data demonstrate significant savings potentials compared to deterministic models as well as (simplified) stochastic models that already exist in literature
    corecore