14,065 research outputs found

    On the number of types in sparse graphs

    Full text link
    We prove that for every class of graphs C\mathcal{C} which is nowhere dense, as defined by Nesetril and Ossona de Mendez, and for every first order formula ϕ(xˉ,yˉ)\phi(\bar x,\bar y), whenever one draws a graph GCG\in \mathcal{C} and a subset of its nodes AA, the number of subsets of AyˉA^{|\bar y|} which are of the form {vˉAyˉ ⁣:Gϕ(uˉ,vˉ)}\{\bar v\in A^{|\bar y|}\, \colon\, G\models\phi(\bar u,\bar v)\} for some valuation uˉ\bar u of xˉ\bar x in GG is bounded by O(Axˉ+ϵ)\mathcal{O}(|A|^{|\bar x|+\epsilon}), for every ϵ>0\epsilon>0. This provides optimal bounds on the VC-density of first-order definable set systems in nowhere dense graph classes. We also give two new proofs of upper bounds on quantities in nowhere dense classes which are relevant for their logical treatment. Firstly, we provide a new proof of the fact that nowhere dense classes are uniformly quasi-wide, implying explicit, polynomial upper bounds on the functions relating the two notions. Secondly, we give a new combinatorial proof of the result of Adler and Adler stating that every nowhere dense class of graphs is stable. In contrast to the previous proofs of the above results, our proofs are completely finitistic and constructive, and yield explicit and computable upper bounds on quantities related to uniform quasi-wideness (margins) and stability (ladder indices)

    Algorithms for Graph-Constrained Coalition Formation in the Real World

    Get PDF
    Coalition formation typically involves the coming together of multiple, heterogeneous, agents to achieve both their individual and collective goals. In this paper, we focus on a special case of coalition formation known as Graph-Constrained Coalition Formation (GCCF) whereby a network connecting the agents constrains the formation of coalitions. We focus on this type of problem given that in many real-world applications, agents may be connected by a communication network or only trust certain peers in their social network. We propose a novel representation of this problem based on the concept of edge contraction, which allows us to model the search space induced by the GCCF problem as a rooted tree. Then, we propose an anytime solution algorithm (CFSS), which is particularly efficient when applied to a general class of characteristic functions called m+am+a functions. Moreover, we show how CFSS can be efficiently parallelised to solve GCCF using a non-redundant partition of the search space. We benchmark CFSS on both synthetic and realistic scenarios, using a real-world dataset consisting of the energy consumption of a large number of households in the UK. Our results show that, in the best case, the serial version of CFSS is 4 orders of magnitude faster than the state of the art, while the parallel version is 9.44 times faster than the serial version on a 12-core machine. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality guarantees for very large systems of agents (i.e., with more than 2700 agents).Comment: Accepted for publication, cite as "in press

    Efficient Algorithms for Node Disjoint Subgraph Homeomorphism Determination

    Full text link
    Recently, great efforts have been dedicated to researches on the management of large scale graph based data such as WWW, social networks, biological networks. In the study of graph based data management, node disjoint subgraph homeomorphism relation between graphs is more suitable than (sub)graph isomorphism in many cases, especially in those cases that node skipping and node mismatching are allowed. However, no efficient node disjoint subgraph homeomorphism determination (ndSHD) algorithms have been available. In this paper, we propose two computationally efficient ndSHD algorithms based on state spaces searching with backtracking, which employ many heuristics to prune the search spaces. Experimental results on synthetic data sets show that the proposed algorithms are efficient, require relative little time in most of the testing cases, can scale to large or dense graphs, and can accommodate to more complex fuzzy matching cases.Comment: 15 pages, 11 figures, submitted to DASFAA 200

    Gains in Power from Structured Two-Sample Tests of Means on Graphs

    Get PDF
    We consider multivariate two-sample tests of means, where the location shift between the two populations is expected to be related to a known graph structure. An important application of such tests is the detection of differentially expressed genes between two patient populations, as shifts in expression levels are expected to be coherent with the structure of graphs reflecting gene properties such as biological process, molecular function, regulation, or metabolism. For a fixed graph of interest, we demonstrate that accounting for graph structure can yield more powerful tests under the assumption of smooth distribution shift on the graph. We also investigate the identification of non-homogeneous subgraphs of a given large graph, which poses both computational and multiple testing problems. The relevance and benefits of the proposed approach are illustrated on synthetic data and on breast cancer gene expression data analyzed in context of KEGG pathways

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page
    corecore