7,723 research outputs found

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems

    On clustering procedures and nonparametric mixture estimation

    Full text link
    This paper deals with nonparametric estimation of conditional den-sities in mixture models in the case when additional covariates are available. The proposed approach consists of performing a prelim-inary clustering algorithm on the additional covariates to guess the mixture component of each observation. Conditional densities of the mixture model are then estimated using kernel density estimates ap-plied separately to each cluster. We investigate the expected L 1 -error of the resulting estimates and derive optimal rates of convergence over classical nonparametric density classes provided the clustering method is accurate. Performances of clustering algorithms are measured by the maximal misclassification error. We obtain upper bounds of this quantity for a single linkage hierarchical clustering algorithm. Lastly, applications of the proposed method to mixture models involving elec-tricity distribution data and simulated data are presented

    Haplotype frequency inference from pooled genetic data with a latent multinomial model

    Full text link
    In genetic studies, haplotype data provide more refined information than data about separate genetic markers. However, large-scale studies that genotype hundreds to thousands of individuals may only provide results of pooled data, where only the total allele counts of each marker in each pool are reported. Methods for inferring haplotype frequencies from pooled genetic data that scale well with pool size rely on a normal approximation, which we observe to produce unreliable inference when applied to real data. We illustrate cases where the approximation breaks down, due to the normal covariance matrix being near-singular. As an alternative to approximate methods, in this paper we propose exact methods to infer haplotype frequencies from pooled genetic data based on a latent multinomial model, where the observed allele counts are considered integer combinations of latent, unobserved haplotype counts. One of our methods, latent count sampling via Markov bases, achieves approximately linear runtime with respect to pool size. Our exact methods produce more accurate inference over existing approximate methods for synthetic data and for data based on haplotype information from the 1000 Genomes Project. We also demonstrate how our methods can be applied to time-series of pooled genetic data, as a proof of concept of how our methods are relevant to more complex hierarchical settings, such as spatiotemporal models.Comment: 35 pages, 16 figures, 3 algorithms, submitted to Biometrics journa
    • …
    corecore