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Abstract: Density-based clustering relies on the idea of linking groups to
some specific features of the probability distribution underlying the data.
The reference to a true, yet unknown, population structure allows framing
the clustering problem in a standard inferential setting, where the con-
cept of ideal population clustering is defined as the partition induced by
the true density function. The nonparametric formulation of this approach,
known as modal clustering, draws a correspondence between the groups and
the domains of attraction of the density modes. Operationally, a nonpara-
metric density estimate is required and a proper selection of the amount of
smoothing, governing the shape of the density and hence possibly the modal
structure, is crucial to identify the final partition. In this work, we address
the issue of density estimation for modal clustering from an asymptotic per-
spective. A natural and easy to interpret metric to measure the distance
between density-based partitions is discussed, its asymptotic approxima-
tion explored, and employed to study the problem of bandwidth selection
for nonparametric modal clustering.

MSC 2010 subject classifications: Primary 62G20, 62H30; secondary
62G07 .
Keywords and phrases: Nonparametric clustering, kernel estimator, mean
shift clustering, plug-in bandwidth, gradient bandwidth.

1. Introduction

Clustering is commonly referred to as the task of finding groups in a set of data
points (see [26], [18] or [23]). While intuitively clear, this task is, in fact, far from
being accurately defined. The density-based approach attempts to circumscribe
this issue by framing the problem into a statistically rigorous setting where
the observed data are assumed to be realizations of a random variable, and
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the clusters are defined with respect to some characteristic of its underlying
probability distribution.

In this sense, a clustering procedure should not be limited to simply produce
a partition of the observed data; instead, it must allow obtaining a whole-space
clustering, that is a partition of the whole sample space [3, 4]. In any case,
each methodology is characterized by the way in which the clusters are defined
in terms of the true distribution, leading to the concept of ideal population
clustering. By serving as a reference “ground truth” to aim at, this concept
introduces a benchmark to evaluate the performance of data-based partitions.

The ideal population goal in density-based clustering can be defined in terms
of two different paradigms: the model-based approach, where each cluster is
associated with a parametric mixture component, and the modal one (see re-
spectively [30] and [32] for some recent reviews). This paper focuses on the latter
formulation, whose name stems from the notion of clusters as the “domains of
attraction” of the modes of the true density underlying the data [43].

Therefore, in practice density estimation assumes a key role in order to ap-
proximate the ideal population goal of modal clustering. While the modal for-
mulation does not preclude using a parametric density estimate as a first step to
perform a data-based modal clustering [5, 39], a long-standing practice resorts
to nonparametric estimators. Precisely, in this paper the focus lies on those
estimators based on kernel smoothing (see e.g. [8] and [47]).

Under- or over-smoothed estimates may lead to deceiving indications about
the modal structure of the underlying density function, and this problem is usu-
ally quantified through some measure of the discrepancy between the estimate
and the target density. In contrast, the aim of this work is to consider nonpara-
metric density estimation as a tool for the final purpose of modal clustering,
focusing on an appropriate metric comparing the partitions induced by the true
and the estimated distribution.

Our main result provides an asymptotic approximation for the considered
metric, which allows introducing new automatic bandwidth selection procedures
specifically designed for nonparametric modal clustering. The accuracy of this
approximation and the performance of the new methods in practice, with re-
spect to the proposed error criterion, is extensively studied via simulations, and
compared with some plausible competitors.

The rest of the paper is structured as follows. Section 2 formally introduces
the modal approach to cluster analysis with reference also to algorithmic details.
In Section 3 the distance criterion to target density estimation for modal clus-
tering is presented, along with the main asymptotic result and its consequences.
Section 4 contains the setup and results of the numerical experiments. A gener-
alization to the multidimensional setting is discussed in Section 5. Finally, some
concluding remarks are stated in Section 6.

2. Background

The connection between groups and density features, established by the modal
approach to cluster analysis, allows to characterize the concept of ideal popu-
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lation clustering. Informally, a population cluster can be defined as the domain
of attraction of a mode of the density [43]. An attempt to formalize this con-
cept has been done in [4] with the aid of Morse Theory, a branch of differential
topology focusing on the large scale structure of an object via the analysis of
the critical points of a function (see e.g. [29] for an introduction).

Let us consider a continuous d-variate random variable X, with probability
density function f : Rd → R. Assume that f is a Morse function, i.e. a smooth
enough function having nondegenerate critical points, and denote byM1, . . . ,Mr

the modes of f (i.e. its local maxima). For a given initial value x ∈ Rd, an integral
curve of the negative density gradient −∇f is defined as the path νx : R→ Rd
such that

ν′x(t) = −∇f(νx(t)), νx(0) = x.

The set of points whose integral curve starts at a critical point x0 (as t→ −∞)
goes under the name of unstable manifold of x0 and is defined as

Wu
−(x0) = {x ∈ Rd : lim

t→−∞
νx(t) = x0}.

It has been showed [44] that the class of the unstable manifolds of every criti-
cal point of a Morse function yields a partition of the whole space. With these
notions at hand, the ideal population clustering C = {C1, . . . , Cr} associated
to a density function f is then defined as the set of the unstable manifolds
{Wu
−(M1), . . .Wu

−(Mr)} of the modes of f . By borrowing concepts from terrain
analysis, the underlying intuition is that, if f is figured as a mountainous land-
scape where the modes are the peaks, a modal cluster is the region that would
be flooded by a fountain emanating from a peak. When d = 1, clusters are
then unequivocally defined by the locations of the minima points of f , which
represent the cluster boundaries.

Equivalently, if the integral curves associated to the positive density gradient
are considered, then a modal cluster is defined as the set of points whose integral
curves converge (as t→ +∞) at the same mode. The concept of modal clusters
as the domains of attraction of the density modes stems naturally from this
definition. Operationally, a numerical algorithm is needed to find the eventual
destination of an initial point, and most of the contributions in this direction
take their steps from the mean-shift algorithm [19], essentially a variant of the
gradient ascent algorithm. The algorithm transforms an initial point x(0) recur-
sively, and identifies a sequence (x(0), x(1), x(2), . . . ) according to an updating
mechanism defined as

x(l+1) = x(l) +A
∇f(x(l))

f(x(l))
,

where A is a d× d positive definite matrix chosen to guarantee the convergence
to a local maximum of f . A partition of the data is therefore obtained by
simply grouping together the observations climbing to the same density mode,
via mean-shift updates.
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From a practical point of view the density f is unknown, therefore an estimate
is needed. When working in a nonparametric framework a common choice is
given by the kernel density estimator. In the following we focus on the univariate
case for ease of exposition and mathematical tractability while the multivariate
extension will be addressed in Section 5 below. Let X1, . . . , Xn be a sample of
i.i.d. realizations of X. Then, the kernel density estimator is defined by

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K is the kernel, usually a smooth, non-negative and symmetric function
integrating to one, and h is the bandwidth, which controls the smoothness of
the density estimate.

While the choice of the function K is known not to have a strong impact in
the performance of the estimate [41, Section 3.3.2], choosing h properly turns
out to be crucial. A small value of h leads to an undersmoothed density estimate,
with the possible appearance of spurious modes, while a too large value results
in an oversmoothed density estimate, possibly hiding relevant features.

In order to select the smoothing parameter some measure of the distance
between the estimated and the true density is needed. A common choice is the
Integrated Squared Error, defined as

ISE(h) =

∫
R
{f̂h(x)− f(x)}2dx.

Depending on the observed data, the ISE is itself subject to a random variabil-
ity that could hinder the problem of bandwidth selection (see [21]). Hence, its
expected value

MISE(h) = E [ISE(h)] (2.1)

is alternatively considered as a non-stochastic error distance. The optimal band-
width hMISE is then defined as hMISE = argminh>0 MISE(h).

Since minimization of the MISE does not lead to closed form solutions for
the optimal bandwidth, its asymptotic counterpart – the AMISE – is often con-
sidered. Both the MISE and the AMISE depend on the true, unknown density
function; for this reason several different approaches to estimate them have been
proposed. Examples are the ones based on least squares cross validation, biased
cross validation or plug-in bandwidth selectors. A comprehensive review of these
methods is beyond the scope of this work and, for a complete exposition, readers
can refer to [47] or to the more recent book by [8].

3. Density estimation for modal clustering

3.1. Asymptotic bandwidth selection for modal clustering

Bandwidth selectors based on the ISE or akin distances pursue the aim of obtain-
ing an appropriate estimate of the density. However, the goal of modal clustering
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Fig 1. Left picture: two quite different densities, from an ISE perspective, inducing the same
partition of the space. Right picture: two closer densities having different number of clusters.

is markedly different from that of density estimation (see e.g. [13]). In fact, two
densities that are close with respect to the ISE may result in quite different clus-
terings while, on the other hand, densities far away from an ISE point of view
could lead to the same partition of the space. A graphical illustration of this idea
is provided in Figure 1. The inappropriateness of the ISE, or related distances,
depends on its focus on the global characteristics of the density, while modal
clustering strongly builds on specific and local features, more closely related to
the density gradient or the high-density regions (see also [11]). Therefore, the
choice of the amount of smoothing should be tailored specifically for clustering
purposes.

So far, the aim of choosing an amount of smoothing for the specific task of
highlighting clustering structures has been scarcely pursued in literature. A re-
lated idea, although without particular reference to cluster analysis, has been
developed by [37], who propose a plug-in type bandwidth selector appropriate
for estimation of highest density regions (see also [33] and [15]). Another re-
lated work, more focused on the clustering problem, is the one by [17], where
the author suggests considering the self-coverage measure as a criterion for band-
width selection. Alternatively, the potential adequacy of a bandwidth selected
to properly estimate the density gradient has been pointed out informally by [6]
and explored numerically by [9]. The theoretical motivation of this suggestion
lies on the strong dependence of both the population modal clustering and the
mean shift updating mechanism on the density gradient. The suggestion in [10]
follows the same rationale and the bandwidth is proposed to be selected as a
modification of the normal reference rule for density gradient estimation.

To address the problem of bandwidth selection for modal clustering, an ap-
propriate measure of distance should compare the data-based clustering induced
by a kernel density estimate with the ideal population one. Stemming from [4], a
natural choice is the distance in measure, where the considered measure here is
the probability P induced by the density f . Formally, let C = {C1, . . . , Cr} and
D = {D1, . . . , Ds} be two partitions with r ≤ s (i.e. possibly different number
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m̂ m

Fig 2. Graphical interpretation of the distance in measure: the shaded area represents the
probability mass that would need to be re-labeled to transform one induced clustering into the
other.

of groups). The distance in measure between C and D is defined as

d(C,D) =
1

2
min
σ∈Ps

{
r∑
i=1

P(Ci∆Dσ(i)) +

s∑
i=r+1

P(Dσ(i))

}
, (3.1)

where C∆D = (C ∩ Dc) ∪ (Cc ∩ D) is the symmetric difference between any
two sets C and D and Ps denotes the set of permutations of {1, 2, . . . , s}. When
r > s we can easily define the distance in measure between C and D as d(D,C).

This distance finds an interpretation as the minimal probability mass that
would need to be re-labeled to transform one clustering into the other (see Figure
2 for a graphical illustration). In this sense, the second term in (3.1) serves
as a penalization for unmatched clusters in one of the clusterings. Practically,
this distance conveys the idea that two partitions are similar not when they
are physically close, but when the differently-labeled points do not represent a
significant portion of the distribution.

It should be noted that the choice of this distance to evaluate the performance
of a data-based clustering is not arbitrary. Indeed, many other possibilities are
described in [31], but the conclusion of that study is that the distance in mea-
sure (called misclassification error there) is “the distance that comes closest to
satifying everyone”. Furthermore, in [45] the distance in measure is considered
as “the most convenient choice from a theoretical point of view”.

As with the ISE-MISE duality, the distance in measure is a stochastic error
distance, so for the purpose of bandwidth selection it seems more convenient to
focus on the Expected Distance in Measure

EDM(h) = E
[
d(Ĉh,C0)

]
, (3.2)

where Ĉh is the data-based partition induced by f̂h and C0 represents the ideal
population clustering. Once the appropriate error distance is defined, the opti-
mal bandwidth h is given by hEDM = argminh>0 EDM(h).



A. Casa et al./Modal clustering asymptotics 6

As it happened with hMISE, it does not seem possible to find an explicit
expression for hEDM. Hence, our goal will be to obtain an asymptotic form for
the EDM that allows deriving a simple approximation to hEDM.

To this aim, consider a standard normal random variable Z, and denote by
ψ(µ, σ2) = E|µ+ σZ| for µ ∈ R and σ > 0. Since |µ+ σZ| has a folded normal
distribution [27], it follows that ψ(µ, σ2) can be explicitly expressed as

ψ(µ, σ2) = (2/π)1/2σe−µ
2/(2σ2) + µ

{
1− 2Φ(−µ/σ)

}
(3.3)

= (2/π)1/2
{
σe−µ

2/(2σ2) + |µ|
∫ |µ|/σ
0

e−z
2/2dz

}
,

where Φ denotes the distribution function of Z. This function ψ plays a key
role in the asymptotic behavior of the expected distance in measure, as the next
result shows (see Appendix A for a proof).

Theorem 1. Assume that f is a bounded Morse function with compact support,
r ≥ 2 modes and local minima m1 < · · · < mr−1, three-times continuously
differentiable around each mj, that

∫∞
−∞ |x|f(x)dx <∞, and that the kernel K is

supported on (−1, 1), has four bounded derivatives and satisfies
∫∞
−∞K(x)dx =

1,
∫∞
−∞ xK(x)dx = 0 and µ2(K) =

∫∞
−∞ x2K(x)dx < ∞. Define R(K(1)) =∫∞

−∞K(1)(x)2dx and suppose also that h ≡ hn is such that h→ 0, nh5/ log n→
∞ and (nh7)−1 is bounded. Then, EDM(h) is asymptotically equivalent to

AEDM(h) =

r−1∑
j=1

f(mj)

f (2)(mj)
ψ
(

1
2µ2(K)f (3)(mj)h

2, R(K(1))f(mj)(nh
3)−1

)
, (3.4)

where g(k) refers to the k-th derivative of a function g(·).

The asymptotically optimal bandwidth hAEDM is then defined as the value of
h > 0 that minimizes AEDM(h). Due to the structure of ψ(·, 1), minimization
of (3.4) is closely related to the problem of minimizing the L1 distance in kernel
density estimation and, in fact, reasoning as in [22] it is possible to show that
hAEDM is of order n−1/7. Unfortunately, as it happened with hEDM, it seems that
neither hAEDM admits an explicit representation hence, to get further insight
into the problem of optimal bandwidth selection for density clustering, it appears
necessary to rely on a tight upper bound for AEDM(h).

To find such a bound it is useful to note that many properties of ψ(u, 1) are
given in [14, Ch. 5], and can be translated to our function of interest by taking
into account that ψ(µ, σ2) = σψ(µ/σ, 1). It follows that ψ(µ, σ2) is symmetric
with respect to µ, nondecreasing for µ > 0 and convex, attaining its minimum
at µ = 0 so that ψ(µ, σ2) ≥ ψ(0, σ2) = (2/π)1/2σ for all µ ∈ R, σ > 0.

By taking into account that e−µ
2/(2σ2) and |1−2Φ(−µ/σ)| are both bounded

by 1, [14] also noted that

ψ(µ, σ2) ≤ (2/π)1/2σ + |µ| (3.5)

for all µ ∈ R, σ > 0. However, a tighter bound for small values of µ is given in
the next lemma.
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Fig 3. Graph of ψ(µ, 1) as a function of µ (grey solid curve), together with the bound (3.5)
(red dotted line) and the bound from Lemma 1 (blue dot-dashed curve).

Lemma 1. The bound ψ(µ, σ2) ≤ (2/π)1/2σ+(2π)−1/2µ2/σ holds for all µ ∈ R
and σ > 0.

The bound in Lemma 1 is tighter than (3.5) whenever |µ| ≤ (2π)1/2σ, but
the situation reverses for bigger values of |µ|, so that none of the two bounds
is uniformly better (see Figure 3) hence we should keep track of both of them.
They lead to upper bounds for the asymptotic EDM.

Corollary 1. Under the conditions of Theorem 1, the asymptotic EDM satisfies
AEDM(h) ≤ min{AB1(h),AB2(h)} for all h > 0, where

AB1(h) = (2/π)1/2R(K(1))1/2bn−1/2h−3/2 + 1
2µ2(K)a1h

2,

AB2(h) = (2/π)1/2R(K(1))1/2bn−1/2h−3/2+

+ (32π)−1/2µ2(K)2R(K(1))−1/2a2n
1/2h11/2.

Here, b =
∑r−1
j=1 bj and a` =

∑r−1
j=1 aj` and for ` = 1, 2, where

aj1 = f(mj)|f (3)(mj)|/f (2)(mj), bj = f(mj)
3/2/f (2)(mj),

aj2 = f(mj)
1/2f (3)(mj)

2/f (2)(mj).

The minimizers of AB1(h) and AB2(h) can be computed explicitly, and are given
by

hAB1 =

(
9R(K(1))b2

2πµ2(K)2a21

)1/7

n−1/7 (3.6)

hAB2 =

(
24R(K(1))b

11µ2(K)2a2

)1/7

n−1/7 . (3.7)
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3.2. Some remarks

In this section we discuss in more depth some of the results derived in Section
3.1. The aim is to provide insights on the behavior of the approximations and
bandwidth selectors and to discuss possible competitors.

Remark 1. Theorem 1 provides an asymptotic expression for the EDM that is
valid as long as the true density has two or more modes. When the true density
is unimodal (r = 1), expression (3.4) is not well-defined. However, under the as-
sumptions of the theorem the kernel estimator is also unimodal with probability
one for big enough n. Thus, asymptotically the distance in measure would be
identically zero, hence the AEDM formula would remain valid under the usual
convention setting

∑0
j=1 = 0.

Moreover, for unimodal densities the numerical work in Section 4 suggests
that there exists h0 > 0 such that EDM(h) = 0 for all h ≥ h0. Hence, in that
case it seems sensible to define hEDM = inf{h > 0: EDM(h) = 0}.
Remark 2. A natural estimator of the density first derivative is the first deriva-
tive of the kernel density estimator. For this estimator it is possible to define
the MISE as in (2.1), and to consider its minimizer hMISE,1 and its asymptotic
approximation hAMISE,1 (see [42] and [7]). The bandwidths (3.6) and (3.7) share
the same order as hAMISE,1, whose expression is given by

hAMISE,1 =

(
3R(K(1))

µ2(K)2R(f (3))

)1/7

n−1/7, (3.8)

with R(f (3)) =
∫∞
−∞ f (3)(x)2dx. This consideration strengthens the intuition,

outlined in Section 3.1, that (3.8) could be an adequate bandwidth choice for
modal clustering purposes.

Remark 3. By explicitly plugging expression (3.3) for ψ into (3.4), it is easily
seen that the AEDM can be decomposed into two summands. Studying their
behavior, as a function of h, it can be checked that when h → 0 the first term
decreases while the second one tends to increase. Vice versa, when h increases,
the opposite behaviour is witnessed. A similar trade-off occurs with the decom-
position of the AMISE into the Asymptotic Integrated Squared Bias and the
Asymptotic Integrated Variance, which are minimized for diverging values of h.

Remark 4. If the true density is locally symmetric around its minima, the con-
siderations in the previous item do not hold anymore. Symmetry around a mini-
mum m implies f (k)(m) = 0, for any odd value of k. Therefore the first summand
of the AEDM expression, related to the bias, vanishes, leading to a monotoni-
cally decreasing behavior of the AEDM itself. This represents a serious issue as
in principle it prevents us from using the proposed bandwidth selector. However,
such situation is highly unlikely to occur in practice, as motivated in Remark
5. A similar anomaly was observed in the related problem of mode estimation
in [12]: if the true density is symmetric around its mode, then Chernoff’s mode
estimator is unbiased. Hence, in some special cases symmetry plays a certain
role in the performance of these smoothing methodologies.
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Fig 4. Univariate density functions selected for simulations.

Remark 5. The derived bandwidths depend on some unknown quantities such
as the true density, its local minima and its second and third derivatives. In
order to be of practical use we shall resort to plug-in strategies, that is, data-
based bandwidth selectors will be proposed in the next section by substituting
the aforementioned unknown quantities with pilot estimates. This is the same
procedure that is commonly adopted when considering the plug-in bandwidth
selector ĥPI,1 for density gradient estimation (see [25] and [6]).With reference to
Remark 4, note that due to sample variability, resorting to the considered plug-
in strategy makes highly unlikely to encounter a situation of perfect symmetry
around a minimum in practice.

Remark 6. Theorem 1 assumes that f is a Morse function with compact support.
Since the support of a probability distribution is always a closed set, any other
assumption (smoothness, critical points, etc) is intended to be made with respect
to the interior of this support. Moreover, in practice any sample takes values in a
bounded set, so we may extend the applicability of Theorem 1 to densities with
unbounded support, provided that we consider their significant support [2], i.e. a
subset of the support where most of the probability mass lies. More formally, the
significant support of a density f is defined as the density level set L(c) = {x ∈
R : f(x) > c}, where c = cα is the largest constant such that P(L(cα)) ≥ 1− α,
for some small α > 0. Note that, by construction, the significant support is
always bounded hence respecting the theorem’s assumptions.
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4. Numerical results

The idea of estimating the density for clustering purposes, via the minimization
of the expected distance in measure – or its asymptotic counterpart – is explored
in this section via simulations. All the analyses have been performed in the R
environment [34] with the aid of the ks [16], meanShiftR [28], clue [24], and
multimode [1] packages.

A total of B = 1000 samples for each of the sizes n ∈ {100, 1000, 10000}
are generated from the univariate densities depicted in Figure 4 and whose
parameters are reported in Appendix B. The selected densities are designed to
illustrate different modal structures to encompass different possible behaviors
from a clustering perspective. In order to respect the assumptions of Theorem
1, in the following analysis we restrain results to the significant support of the
considered densities, as discussed in Remark 6, with α = 0.01.

The first goal of the study was to evaluate the quality of the asymptotic ap-
proximation of the EDM and the behavior of the two bounds derived in Corollary
1. Since an explicit expression for the EDM was not available, we obtained a
Monte Carlo approximation based on the B = 1000 synthetic samples.

The plots displayed in Tables 1 to 5 show the behavior of the asymptotic
approximations, with respect to the EDM, as a function of the bandwidth h.
As expected, the approximations improve as the sample size increases. The two
bounds show a quite different behavior, with characteristics that reflect the
theoretical properties pointed out in Section 3.2. The first bound is closer to
the AEDM in uniform terms, but despite having a diverging behavior for large
h the second bound is usually closer to the AEDM around the location of the
minimizer hAEDM.

With regard to the EDM, it presents a nearly flat pattern around its min-
imizer, thus suggesting a range of plausible bandwidths with very similar per-
formance as the optimal one. This is especially true for densities with a simpler
modal structure, captured by the kernel estimate for a wide range of bandwidth
values.

To appreciate how much is lost by changing the target from the optimal
hEDM to the oracle surrogates hAEDM and hMISE,1, the first three lines in each
table also present the values for the corresponding EDM, all computed un-
der a full knowledge of the density and its involved features. By construction,
EDM(hEDM) is the lowest of these values and, being derived as an asymptotic
approximation, the oracle hAEDM stands close to this optimal value, especially
for larger sample sizes. However, it is remarkable that hMISE,1, despite being
based on a different optimality criterion, also leads to comparable or even im-
proved results over hAEDM in terms of the EDM.

As a second goal, we propose new data-based bandwidth selectors specifically
designed for modal clustering purposes. The first step consists in estimating the
number of local minima, and their location. This is achieved by numerically
finding the roots of a pilot estimate of f (1), constructed as the derivative of
the kernel density estimator using the plug-in gradient bandwidth ĥPI,1. Then,
similarly, we obtain pilot estimates of f , f (2) and f (3) at the estimated local
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Table 1
Top panel: the EDM (solid line), the AEDM (dashed grey line), and the bounds AB1 (dotted
line) and AB2 (dot-dashed line) versus h, for n = 100, 1000, 10000. All the expressions are

evaluated by assuming f and all the involved quantities known. The minimum EDM is
reported below the plots, together with the EDM for the oracle bandwidths hAEDM and
hMISE,1. Middle panel: average distances in measure (and their standard error) for the
proposed bandwidth selectors and the plug-in bandwidth for density gradient estimation.

Bottom panel: percentages of times when the estimated number of cluster r̂ matches the true
one r. Results refer to density M1.
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hAEDM 0.164 0.103 0.050
hMISE,1 0.146 0.081 0.044

ĥAEDM 0.267 (0.173) 0.103 (0.130) 0.045 (0.075)

ĥAB1 0.256 (0.174) 0.105 (0.127) 0.056 (0.084)

ĥAB2 0.265 (0.173) 0.102 (0.129) 0.048 (0.079)

ĥPI,1 0.221 (0.176) 0.063 (0.084) 0.029 (0.052)
% r̂ = r 54.5 91.7 92.6

Table 2
Cf. Table 1. Results refer to density M2.
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hAEDM 0.143 0.047 0.008
hMISE,1 0.165 0.041 0.011

ĥAEDM 0.324 (0.200) 0.061 (0.070) 0.010 (0.016)

ĥAB1 0.301 (0.195) 0.053 (0.066) 0.011 (0.017)

ĥAB2 0.318 (0.199) 0.058 (0.069) 0.010 (0.016)

ĥPI,1 0.256 (0.159) 0.092 (0.076) 0.008 (0.005)
% r̂ = r 2.8 58.0 100.0

minima using kernel estimates with the same bandwidth ĥPI,1. These quanti-
ties are subsequently plugged-in in the formulas of the AEDM, AB1 and AB2,
and the minimizers of the resulting estimated criteria are found; in the case of
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Table 3
Cf. Table 1. Results refer to density M3.
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ĥAEDM 0.090 (0.110) 0.039 (0.057) 0.026 (0.036)

ĥAB1 0.087 (0.104) 0.042 (0.058) 0.028 (0.035)

ĥAB2 0.091 (0.109) 0.040 (0.058) 0.026 (0.036)

ĥPI,1 0.050 (0.072) 0.024 (0.025) 0.019 (0.017)
% r̂ = r 91.0 91.6 88.1

the estimated AEDM by numerical minimization, and according to expressions
(3.6) and (3.7) for AB1 and AB2 respectively. The data-based bandwidths thus

obtained are denoted ĥAEDM, ĥAB1 and ĥAB2, respectively.
Occasionally (although rarely) the first step in the procedure above yielded a

single mode, and then the AEDM was undefined. In those cases, and according
to the rationale exposed in Remark 1, a sensible choice for h is the critical
bandwdith proposed by [40],

ĥcrit = inf{h > 0 : f̂h(·) has exactly one mode},

so in that case we set ĥAEDM = ĥAB1 = ĥAB2 = ĥcrit.
Tables 1 to 5 also contain the Monte Carlo averages and standard deviations

of the distances in measure obtained when performing modal clustering using
the bandwidth selectors ĥAEDM, ĥAB1 and ĥAB2. For completeness, their perfor-
mance is also compared to that of ĥPI,1, which so far probably represents their
most sensible competitor in the clustering framework (see [9]).

In general, ĥAB1 and ĥAB2 led to more accurate clusterings than ĥAEDM,
with a slight preference for ĥAB1. The gradient-based bandwidth ĥPI,1, in turn,
not only produces competitive results, but its Monte Carlo average distance in
measure appears lower than the one produced by the asymptotic EDM minimiz-
ers. In fact, a deeper insight into the standard errors of the obtained distances
shows that ĥAEDM, as well as ĥAB1 and ĥAB2, produce more variable results.
The higher variability seems to be due to the sensitivity of the minimizers to
the plugged in pilot estimates, which strongly depend on local features of the
density. Some further investigations, not fully reported here, suggest that the
main responsible for this behaviour is not the pilot estimate of the local minima
but the pilot density derivatives estimates at the minimum points. Also, due to
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Table 4
Cf. Table 1. Results refer to density M4.
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% r̂ = r 85.4 97.2 99.8

the use of different pilot bandwidths to estimate the unknown mj , f
(2), and f (3),

it may occur, indeed, that f̂ (2)(m̂j) assumes even negative values. On the other
hand, while relying as well on some plug-in estimates, the gradient-based band-
width ĥPI,1 produces more robust clusterings, as the quantities to be estimated
refer conversely to global features of the density. As expected, this diverging
behavior tends to vanish with increasing sample size since the asymptotic ap-
proximations improve. As a confirmation, with n = 10000, all the considered
bandwidths perform comparably.

5. Multidimensional generalization

The concepts discussed so far refer to the one-dimensional setting where a math-
ematically rigorous treatment is feasible. The multidimensional generalization
poses some difficulties since obtaining an asymptotic approximation of the EDM
appears far from trivial. Hence, in order to gain some insight into the problem
of selecting the amount of smoothing for nonparametric clustering in more than
one dimension, some numerical comparisons are performed assuming the true
density as known.

Denote by f : Rd → R the true density function and by

f̂H(x) =
1

n

n∑
i=1

|H|−1/2K
(
H−1/2(x−Xi)

)
, (5.1)

its kernel estimate based on a sample X1, . . . ,Xn and indexed by a symmetric
positive definite d × d bandwidth matrix H. The problem of bandwidth selec-
tion is considered by studying the EDM between the clustering induced by the
kernel estimate ĈH and the ideal population clustering C0. These clusterings are
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Table 5
Cf. Table 1. Results refer to density M5.
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not so easily identifiable as in the unidimensional setting, due to the arbitrary
forms that the cluster boundaries may adopt, however an approximation of the
distance in measure d(ĈH,C0) can be computed by resorting to a discretization
scheme as follows (see [9] for further details):

1. Take a grid over the sample space and rule the grid by considering hyper-
rectangles centered at each grid point.

2. Assign a cluster membership to each grid point by running a population
version of the mean-shift algorithm i.e. using the true density. This pro-
duces a discretized version of C0.

3. Similarly, obtain the data-based partition ĈH induced by f̂H.
4. Compute the probability mass of each single hyper-rectangle in C0.
5. Compute the distance in measure as in (3.2) where the involved probabil-

ities are evaluated based on the previous step.

For the multidimensional simulation study, a total of B = 1000 samples for
each of the sizes n ∈ {100, 1000} were generated from the bivariate densities
whose contour plots are shown in Figure 5 and described in Appendix B. The
densities have been chosen to generalize the settings M1 and M5 included in the
univariate study.

Three different parametrizations for the bandwidth matrix were considered:
a scalar bandwidth H = h2I, with I the identity matrix, a diagonal bandwidth
H = diag(h21, h

2
2), and a full, unconstrained bandwidth matrix H. For den-

sity and density derivative estimation, [46] and [7] showed that the use of the
simplest scalar bandwidth can be quite detrimental in practice, a diagonal band-
width may suffice in some scenarios, but in general it is advantageous to employ
unconstrained bandwidth matrices (see also [8]). However, such results have
never been obtained in a modal clustering framework; thus one of the goals of
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Fig 5. Bivariate density functions selected for simulations.

this simulation study is to examine how the bandwidth matrix parametrization
affects the performances of the procedures.

Using the synthetic samples from each density in the study, it was possible to
obtain a Monte Carlo estimate of the (discretized version of the) EDM, which
was then minimized over the class of scalar, diagonal and unconstrained band-
width matrices. The EDM was computed also for the MISE-optimal bandwidth
for density gradient estimation over the same matrix classes. In both cases, the
true density as well as all the involved quantities were assumed to be known. The
EDM minimizers were determined numerically, by running the procedure over
a grid of sensible values of the entries, while the optimal matrices for gradient
estimation were determined as in [7].

The results are reported in Tables 6 and 7. Clustering based on the optimal
bandwidth according to the EDM is very accurate in both of the considered ex-
amples, and improves considerably for increasing sample size. The use of more
complex bandwidth parametrizations does not seem worth for modal clustering
since results obtained with a full, unconstrained bandwidth matrix are compa-
rable with those obtained with a scalar bandwidth, while the latter requires a
substantially smaller computational effort.

In the multidimensional setting, the gradient bandwidth is quite competitive
in terms of EDM, as in the univariate case. Again the comparable performance
of unconstrained bandwidth matrices does not seem to justify the use of more
complex parametrizations.
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Table 6
Minimum EDM associated with a density estimate with bandwidth matrix H selected to

minimize the EDM (HEDM) and the MISE for gradient estimation (HMISE,1). Different
parametrizations for H are considered. In both cases, the true density as well as all the

involved quantities are assumed to be known. Results refer to density M6.

HEDM HMISE,1

n =100 n=1000 n =100 n=1000(
h2 0
0 h2

)
0.006 0.004 0.064 0.040(

h21 0
0 h22

)
0.006 0.004 0.064 0.040(

h21 h12
h12 h22

)
0.005 0.003 0.042 0.024

Table 7
Cf. Table 6. Results refer to density M7.

HEDM HMISE,1

n =100 n=1000 n =100 n=1000(
h2 0
0 h2

)
0.114 0.044 0.116 0.054(

h21 0
0 h22

)
0.114 0.042 0.115 0.055(

h21 h12
h12 h22

)
0.110 0.040 0.121 0.054

6. Conclusions

The modal clustering methodology provides a framework to perform cluster
analysis with a clear and explicit population goal. It allows clusters of arbitrary
shape and size, which can be captured by means of a nonparametric density
estimator. In this context, the distance in measure represents a natural and
easily interpretable error criterion. Therefore, in this paper we have presented
an asymptotic study of this criterion for the case where density estimates of
kernel type are employed to obtain a whole-space clustering via the mean shift
algorithm.

Our asymptotic approximations are useful to gain insight into the fundamen-
tal problem of bandwidth selection for modal clustering and, at the same time,
serve as the basis to propose practical data-based bandwidth choices specifically
designed for clustering purposes.

The finite-sample performance of the new proposals was investigated in a
thorough simulation study, and compared to the oracle bandwidths i.e. the op-
timal choices when the true population is fully known. The gradient bandwidth,
designed for the closely related problem of density gradient estimation, was also
included as a natural competitor in the study.

The results of this simulation study have suggested that all the methods
perform quite satisfactorily, and exhibit a very similar behavior for large sample
sizes. For smaller samples, the performance of the gradient bandwidth was rather
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remarkable, since it obtained comparable or even better results than the new
proposals, even without being specifically conceived for modal clustering.

This phenomenon resembles the conclusions obtained in [36] regarding the
related problem of level set estimation. There, it was shown that the traditional
bandwidth selectors for density estimation often outperformed more sophisti-
cated methods designed for level set estimation purposes. The common pattern
in both situations is that the optimal choices for the specific problems (level
set estimation and modal clustering, respectively) depend on very subtle local
features of the unknown density function, which are difficult to estimate, so that
choices based on a more global, yet somehow related, perspective represent a
sensible alternative.

Appendix A: Proofs

Proof of Theorem 1. From Theorem 4.1 in [4] it follows that, with probability

one, there exists n0 ∈ N such that the kernel density estimator f̂h has the same
number of local minima as f for all n ≥ n0. Let us denote by m̂h,1 < · · · <
m̂h,r−1 the local minima of f̂h. Then, the expected distance in measure between

the data-based clustering Ĉh and the population clustering C0 can be written as

EDM(h) =

r−1∑
j=1

E|F (m̂h,j)− F (mj)|. (A.1)

Write, generically, m̂ and m for any of the estimated and true local minima.
A Taylor expansion with integral remainder allows writing

F (m̂)− F (m) = (m̂−m)

∫ 1

0

f
(
m+ t(m̂−m)

)
dt.

The assumptions imply that m̂ → m almost surely [see, for instance, 35] and,

since f is bounded and continuous, this readily yields
∫ 1

0
f
(
m+ t(m̂−m)

)
dt→

f(m) almost surely, which entails that E|F (m̂)− F (m)| ∼ f(m)E|m̂−m|. The
result then follows from Equation (2.6) in [20], where the asymptotic form of
E|m̂−m| is given.

Proof of Lemma 1. From ψ(µ, σ2) = σψ(µ/σ, 1), it suffices to show that ψ(u, 1) ≤
(2/π)1/2 + (2π)−1/2u2 for u ≥ 0. From the definition of ψ, this is equivalent to

proving that α(u) ≤ 1, where α(u) = e−u
2/2 + u

∫ u
0
e−z

2/2dz − u2/2. Since
α(0) = 1, it is enough to show that α is nonincreasing, but this immediately

follows from the fact that α′(u) =
∫ u
0
e−z

2/2dz − u.

Appendix B: Parameter settings

In the following the parameter settings of the densities selected for the simula-
tions are presented. Since all the densities are mixtures of Gaussian models, we
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adopt the usual notation where, for a given k component, πk represent the k-th
mixture weight, µk and σ2

k (Σk for the bivariate models) the mean and variance
(covariance matrix).

B.1. Unidimensional parameter settings

B.1.1. Density M1

Components πk µk σ2
k

1 0.75 0.00 0.83
2 0.25 1.37 0.09

B.1.2. Density M2

Components πk µk σ2
k

1 0.45 -0.93 0.22
2 0.45 0.93 0.22
3 0.1 0.00 0.04

B.1.3. Density M3

Components πk µk σ2
k

1 0.5 -0.74 0.14
2 0.3 0.37 0.55
3 0.2 1.47 0.14

B.1.4. Density M4

Components πk µk σ2
k

1 0.15 0.00 0.44
2 0.15 -0.33 0.19
3 0.5 -0.99 0.14
4 0.2 1.32 0.19

B.1.5. Density M5

Components πk µk σ2
k

1 0.5 0.00 0.14
2 0.35 1.28 0.14
3 0.15 2.56 0.11
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B.2. Bidimensional settings

B.2.1. Asymmetric bimodal

Components πk µk Σk

1 0.5

(
1
−1

) (
0.44 0.31
0.31 0.44

)
2 0.5

(
−1
1

) (
0.44 0

0 0.44

)

B.2.2. Trimodal

Components πk µk Σk

1 0.43

(
−1
0

) (
0.36 0.25
0.25 0.49

)
2 0.43

(
1

1.15

) (
0.36 0

0 0.49

)
3 0.14

(
1

−1.15

) (
0.36 0

0 0.49

)
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Meilă, F. Murtagh and R. Rocci (Eds.), Handbook of Cluster Analysis 619–
635. CRC Press.

[32] Menardi, G. (2016). A review on modal clustering. International Statis-
tical Review 84(3) 413–433.

[33] Qiao, W. (2018). Asymptotics and optimal bandwidth selection for non-
parametric estimation of density level sets. arXiv:1707.09697.

[34] R Core Team (2018) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

[35] Romano, J.P. (1988). On weak convergence and optimality of kernel den-
sity estimates of the mode. Annals of Statistics 16 629–647.

[36] Saavedra-Nieves, P., González-Manteiga, W. and Rodŕıguez-
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