115 research outputs found

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Cuantificación de glándulas en imágenes histopatológicas de cáncer gástrico

    Get PDF
    Automatic detection and quantification of glands in gastric cancer may contribute to objectively measure the lesion severity, to develop strategies for early diagnosis, and most importantly to improve the patient categorization; however, gland quantification is a highly subjective task, prone to error due to the high biopsy traffic and the experience of each expert. The present master’s dissertation is composed by three chapters that carry to an objective identification of glands. In the first chapter of this document we present a new approach for segmentation of glandular nuclei based on nuclear local and contextual (neighborhood) information “NLCI”. A Gradient-BoostedRegression-Tree classifier is trained to distinguish between glandular nuclei and non glandular nuclei. Validation was carried out using 45.702 annotated nuclei from 90 fields of view (patches) extracted from whole slide images of patients diagnosed with gastric cancer. NLCI achieved an accuracy of 0.977 and an F-measure of 0.955, while R-CNN yielded corresponding accuracy and F-measures of 0.923 and 0.719, respectively. In second chapter we presents an entire framework for automatic detection of glands in gastric cancer images. By selecting gland candidates from a binarized version of the hematoxylin channel. Next, the gland’s shape and nuclei are characterized using local features which feed a Random-Cross-validation method classifier trained previously with images manually annotated by an expert. Validation was carried out using a data-set with 1.330 from seven fields of view extracted from patients diagnosed with gastric cancer whole slide images. Results showed an accuracy of 93 % using a linear classifier. Finally, in the third chapter analyzing gland and their glandular nuclei most relevant features, since predict if a patient will survive more than a year after being diagnosed with gastric cancer. A feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy “mRMR” approach selects those features that correlated better with patient survival. A data set with 668 Fields of View (FoV), 2.076 glandular structures from 14 whole slide images were extracted from patient diagnosed with gastric cancer. Results showed an accuracy of 78.57 % using a QDA Linear & Quadratic Discriminant Analysis was training with Leave-one-out e.g training with thirteen cases and leaving a separate case to validate.La detección y cuantificación automática de las glándulas en el cáncer gástrico puede contribuir a medir objetivamente la gravedad de la lesión, desarrollar estrategias para el diagnóstico precoz y lo que es más importante, mejorar la categorización del paciente; sin embargo, su cuantificación es una tarea altamente subjetiva, propensa a errores debido al alto tráfico de biopsias y a la experiencia de cada experto. La presente disertación de maestría está compuesta por tres capítulos los cuales llevan a la cuantificación objetiva de glándulas. En el primer capítulo del documento se presenta un nuevo enfoque para la segmentación de los núcleos glandulares en base a la información nuclear local y contextual (vecindario). Se entrenó un Gradient-Boosted-Regression-Tree para distinguir entre núcleos glandulares y núcleos no glandulares. La validación se llevó con 45.702 núcleos anotados manualmente de 90 campos de visión (parches) extraídos de imágenes de biopsias completas de pacientes diagnosticados con cáncer gástrico. NLCI logró una precisión de 0.977% y un F-Score de 0.955%, mientras que fast R-CNN arrojó una precisión de 0.923% y un F-Score y 0.719%. En el segundo capítulo se presenta un marco completo para detección automática de glándulas en imágenes de cáncer gástrico. Las glándulas candidatas se seleccionan de una versión binarizada del canal de hematoxilina. A continuación, la forma y los núcleos de las glándulas se caracterizan y se alimenta un clasificador Random Cross Validation, entrenado previamente con imágenes anotadas manualmente por un experto. La validación se realizó en un conjunto de datos con 1.330 parches extraídos de siete biopsias de pacientes diagnosticados con cáncer gástrico. Los resultados mostraron una precisión del 93% utilizando un clasificador lineal. Finalmente, el tercer capítulo analiza las características más relevantes de las glándulas y sus núcleos glandulares, para predecir la sobrevida a un año de un paciente diagnosticado con cáncer gástrico. Una selección de características basada en información mutua: criterios de dependencia máxima, máxima relevancia y mínima redundancia (mRMR) escogen las características correlacionadas con la supervivencia del paciente. Se extrajo un conjunto de datos con 668 campos de visión (FoV), 2.076 estructuras glandulares de 14 imágenes completas de pacientes diagnosticados con cáncer gástrico. Los resultados mostraron una precisión del 76.3% usando un Análisis Discriminante Lineal y Cuadrático (QDA) y un esquema de evaluación entrenando con trece casos y dejando un caso aparte para validar.Magíster en Ingeniería Biomédica. Línea de investigación: Procesamiento de señale

    Computer-Assisted Characterization of Prostate Cancer on Magnetic Resonance Imaging

    Get PDF
    Prostate cancer (PCa) is one of the most prevalent cancers among men. Early diagnosis can improve survival and reduce treatment costs. Current inter-radiologist variability for detection of PCa is high. The use of multi-parametric magnetic resonance imaging (mpMRI) with machine learning algorithms has been investigated both for improving PCa detection and for PCa diagnosis. Widespread clinical implementation of computer-assisted PCa lesion characterization remains elusive; critically needed is a model that is validated against a histologic reference standard that is densely sampled in an unbiased fashion. We address this using our technique for highly accurate fusion of mpMRI with whole-mount digitized histology of the surgical specimen. In this thesis, we present models for characterization of malignant, benign and confounding tissue and aggressiveness of PCa. Further validation on a larger dataset could enable improved characterization performance, improving survival rates and enabling a more personalized treatment plan

    Automatic detection of malignant prostatic gland units in cross-sectional microscopic images

    Get PDF
    Prostate cancer is the second most frequent cause of cancer deaths among men in the US. In the most reliable screening method, histological images from a biopsy are examined under a microscope by pathologists. In an early stage of prostate cancer, only relatively few gland units in a large region become malignant. Discovering such sparse malignant gland units using a microscope is a labor-intensive and error-prone task for pathologists. In this paper, we develop effective image segmentation and classification methods for automatic detection of malignant gland units in microscopic images. Both segmentation and classification methods are based on carefully designed feature descriptors, including color histograms and texton co-occurrence tables. © 2010 IEEE.published_or_final_versionThe 17th IEEE International Conference on Image Processing (ICIP 2010), Hong Kong, China, 26-29 September 2010. In Proceedings of the 17th ICIP, 2010, p. 1057-106

    Histopathological image analysis: a review,”

    Get PDF
    Abstract-Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Adjacent Slice Prostate Cancer Prediction to Inform MALDI Imaging Biomarker Analysis

    Get PDF
    Prostate cancer is the second most common type of cancer among men in US [1]. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. Proteomic biomarkers can improve upon these methods. MALDI molecular spectra imaging is used to visualize protein/peptide concentrations across biopsy samples to search for biomarker candidates. Unfortunately, traditional processing methods require histopathological examination on one slice of a biopsy sample while the adjacent slice is subjected to the tissue destroying desorption and ionization processes of MALDI. The highest confidence tumor regions gained from the histopathological analysis are then mapped to the MALDI spectra data to estimate the regions for biomarker identification from the MALDI imaging. This paper describes a process to provide a significantly better estimate of the cancer tumor to be mapped onto the MALDI imaging spectra coordinates using the high confidence region to predict the true area of the tumor on the adjacent MALDI imaged slice
    corecore