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Sunny Catalina Alfonso Niño

Universidad Nacional de Colombia
Medical School, Department of Diagnostic Images
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Sunny Catalina Alfonso Niño

Thesis presented as partial requirement for the degree of:
Master in Biomedical Engineering

Advisor:
MD, MSC, PHD, Doctor, Medical Surgeon, Magister in Electrical Engineering, PhD in

Sciences Biomedicales, Eduardo Romero Castro

Research Area:
Processing signals
Research Group:

Cim@lab

Universidad Nacional de Colombia
Medical School, Department of Diagnostic Images
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Choose a job you love, and you will never have to
work a day in your life
Confucio

Life is like riding a bicycle. In order to keep your
balance, you must keep moving
Albert Einstein

A goal is a dream with a deadline
Napoleon Hill
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Resumen

La detección y cuantificación automática de las glándulas en el cáncer gástrico puede contribuir a
medir objetivamente la gravedad de la lesión, desarrollar estrategias para el diagnóstico precoz y lo
que es más importante, mejorar la clasificación del paciente; sin embargo, su cuantificación es una
tarea altamente subjetiva, propensa a errores debido al alto tráfico de biopsias y a la experiencia
de cada experto. La presente disertación de maestrı́a está compuesta por tres capı́tulos los cuales
llevan a la cuantificación objetiva de glándulas. En el primer capı́tulo del documento se presen-
ta un nuevo enfoque para la segmentación de los núcleos glándulares en base a la información
nuclear local y contextual (vecindario) “NLCI”. Se entreno un Gradient-Boosted-Regression-Tree
para distinguir entre núcleos glándulares y núcleos no glándulares. La validación se llevó con
45.702 núcleos anotados manualmente de 90 campos de visión (parches) extraı́dos de imágenes
de biopsias completas de pacientes diagnosticados con cáncer gástrico. Finalmente, un modelo
Deep Learning fue entrenado como lı́nea base para comparar nuestros resultados. NLCI logró una
precisión de 0.977 % y un F-Score de 0.955 %, mientras que la red convolucional “fast R-CNN”
arrojó una precisión de 0.923 % y un F-Score y 0.719 %. En el segundo capı́tulo se presenta un
marco completo para la detección automática de glándulas en imágenes de cáncer gástrico. Las
glándulas candidatas de una versión binarizada del canal de hematoxilina, luego, la forma y los
núcleos de las glándulas se caracterizan mediante caracterı́sticas locales que alimentan un clasifi-
cador Random-Cross-Validation, entrenado previamente con imágenes anotadas manualmente por
un experto. La validación se realizó mediante un conjunto de datos con 1.330 parches extraı́dos
de siete biopsias de pacientes diagnosticados con cáncer gástrico. Los resultados mostraron una
precisión del 93 % utilizando un clasificador lineal. Finalmente, en el tercer capı́tulo analiza las
caracterı́sticas más relevantes entre las glándulas y sus núcleos glandulares para predecir la sobre-
vida a un año de un paciente diagnosticado con cáncer gástrico. Una selección de caracterı́sticas
basada en información mutua: criterios de dependencia máxima, máxima relevancia y mı́nima re-
dundancia (mRMR) escogen las caracterı́sticas correlacionadas con la supervivencia del paciente.
Se extrajo un conjunto de datos con 668 campos de visión (FoV), 2.076 estructuras glandulares de
14 imágenes completas de pacientes diagnosticados con cáncer gástrico. Los resultados mostraron
una precisión del 78.57 % usando un Análisis Discriminante Lineal y Cuadrático (QDA) y un es-
quema de evaluación entrenando con trece casos y dejando un caso aparte para validar.

Palabras clave: Glándulas, cáncer gástrico, segmentación de núcleos, información local y contextual,
mRMR, predecir, cuantificación, fast R-CNN, supervivencia.
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Abstract
Automatic detection and quantification of glands in gastric cancer may contribute to objectively
measure the lesion severity, to develop strategies for early diagnosis, and most importantly to im-
prove the patient categorization; however, gland quantification is a highly subjective task, prone
to error due to the high biopsy traffic and the experience of each expert. The present master’s dis-
sertation is composed by three chapters that carry to an objective identification of glands. In the
first chapter of this document we present a new approach for segmentation of glandular nuclei
based on nuclear local and contextual (neighborhood) information “NLCI”. A Gradient-Boosted-
Regression-Tree classifier is trained to distinguish between glandular nuclei and non glandular
nuclei. Validation was carried out using 45.702 annotated nuclei from 90 fields of view (patches)
extracted from whole slide images of patients diagnosed with gastric cancer. NLCI achieved an
accuracy of 0.977 and an F-measure of 0.955, while R-CNN yielded corresponding accuracy and
F-measures of 0.923 and 0.719, respectively. In second chapter we presents an entire framework
for automatic detection of glands in gastric cancer images. By selecting gland candidates from a
binarized version of the hematoxylin channel. Next, the gland’s shape and nuclei are characterized
using local features which feed a Random-Cross-validation method classifier trained previously
with images manually annotated by an expert. Validation was carried out using a data-set with
1.330 from seven fields of view extracted from patients diagnosed with gastric cancer whole slide
images. Results showed an accuracy of 93 % using a linear classifier. Finally, in the third chapter
analyzing gland and their glandular nuclei most relevant features, since predict if a patient will
survive more than a year after being diagnosed with gastric cancer. A feature selection based on
mutual information: criteria of max-dependency, max-relevance, and min-redundancy “mRMR”
approach selects those features that correlated better with patient survival. A data set with 668
Fields of View (FoV), 2.076 glandular structures from 14 whole slide images were extracted from
patient diagnosed with gastric cancer. Results showed an accuracy of 78.57 % using a QDA Linear
& Quadratic Discriminant Analysis was training with Leave-one-out e.g training with thirteen ca-
ses and leaving a separate case to validate.

Keywords: Glands, gastric cancer, nucleus segmentation, local and contextual information, mRMR,
predict, quantification, fast R-CNN, survival.



1 Introduction

Gastric cancer (GC) continues being a major public health problem. Especially considering that
there are about one million new cases have been reported yearly worldwide. Which makes it the
fourth most common cancer and the seven leading cause of cancer deaths around the world [8].
This disease is usually caused by genetic conditions, environmental risks, geographical conditions,
bacterial infections, obesity, smoking and dietary habits. In general, GC is more common in older
adults, having an incidence of 17 to 48 cases per 100,000 inhabitants. Consequently, the increase
in mortality indicators corroborates that life expectancy at 5 years after the cancer is detected, is
only of 10 % [41].
Etymologically, GC has been linked to infection with Helicobacter Pylori virus (HPV) [58] in spite
of this fact, incidence has decreased worldwide due to prevention strategies and early diagnosis. In
our country, more than 90 % of these cases have a late diagnosis. Incidence mortality in populations
with HPV, begins with an allergy that ends up being a gastritis in 40 % of population, of which 10 %
develops ulcer by preventing the correct absorption of nutrients, and finally 5 % of this population
incurs suffering GC. Children under 10 years old is the population that is most likely to suffer this
kind of infections, because the risks could be increase when they swim in dirty pools or rivers, as
well as ingesting water or food not hygienically prepared.
Epithelial cells that overlay the gland usually have a white color and are affected by polluting
substances contained in alcohol, different toxins in food and poor nutrition. In all case this will be
affect the chromosomes of this cell, causing carcinogenic processes e.g. enterocytes, nitrosamines,
aimes, nitrosamines, that can act on genetic material. These bad habits lead to the blockage of the
regulatory mechanisms that control the cell cycle, and do not allow cells under normal conditions
to have a controlled reproduction process. However, immune system of human being generates
new renewing cells that cure possible infections in mucosa, every 15 to 21 days; for this reason
it is possible that next state of cancer will not be continued, but that state of health will improve
before metaplasia occurs.

1.1. Gastric Cancer States

Gastric cancer remains one of the deadly diseases with poor prognosis. New classification of gastric
cancers based on histologic features, genotypes and molecular phenotype helps better understand
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the characteristics of each sub-type, and improve early diagnosis, prevention and treatment [40].
According to its extension or depth, GC is diagnosed dividing into early and advanced cancer;
When a biopsy is diagnosed as early cancer it is understood that the tumor is within the mucosa
and even inside of the submucosa and has a diameter minor than 5 cm; or, conversely, advanced
GC already begins to exceed the submucosa measuring more than 5 cm of diameter and suggest
ganglionic compromise mutating to other tissues of the body. The diagnosis was made by patho-
logists, who through the slide can analyze visual changes suffered by glands through the different
states of GC [3]. Figure 1-1 shows stages of cancer evolution.

Figure 1-1: Evolution of GC, authorship.

Stomach is composed of glands and foveolas in which metaplasia, dysplasia and cancer can occur;
within GC classes, the most advanced stage is known as adenocarcinoma. According to the Laurén
classification, gastric adenocarcinomas are divided into intestinal, diffuse, mixed and indetermina-
te subtypes [45]. They vary not only in morphology but also in epidemiology, progression pattern,
genetics and clinical picture. The main reason that this dissertation has, is research the tubular sub-
type one, occurs in about 54 % of the cases, as it is the most frequent to develop gastric cancer and
it manifests the degrees of severity in terms of geometric characteristic in each cancer state. It is
twice as often in males as in females and is localized mostly in the antrum. Histopathologically, it
is characterized by malignant epithelial cells that show cohesiveness and glandular differentiation
infiltrating the surrounding tissue [48]. Specifically in adenocarcinoma stage, the tubular structu-
res are not objectively quantified to achieve a good differentiation or diagnosis according with the
WHO “World Health Organization” this is because the quantification of glands might help to deter-
mine the degree of cancer; however, as it mainly relies on the visual interpretation of a pathologist,
it may lead to a certain level of subjectivity. That is why automated tools could help to standardize
diagnostic processes [10][47].
By contrast, the diffuse subtype (32 %) is characterized by tumor cells that show poor differen-
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tiation and lack of cohesion. This subtype occurs equally often in males and females and these
patients are on average younger than those with intestinal GC. Intestinal type of gastric cancer is
felt to be caused mainly by environmental (exogenous) factors whereas the diffuse type is thought
to be due to hereditary and genetic (endogenous) factors. The intestinal and diffuse GC subtypes
are pathologically considered as separate entities, but clinically, both are treated similarly. The
main clinical difference is related to the different recurrence patterns, with the diffuse-mixed types
more prone to peritoneal dissemination, especially when the serosa is involved, whereas the risk
of liver metastases is higher in the intestinal type[10].

1.2. WHO classification

Compared to the Laurén´s system, the WHO classification is based on pure histo-morphological
appearance. The WHO divides GC into tubular, papillary, mucinous, poorly cohesive (including
signet ring cell carcinoma) and mixed carcinomas. This classification includes, besides adenocar-
cinomas, also all other types of gastric tumors [7]. When one compares the Laurén and the WHO
classification tubular and papillary carcinomas fall within the intestinal type of stomach cancer,
whereas signet-ring cell carcinoma and other poorly cohesive carcinomas correspond to the Laurén
diffuse type [10][64].

1.3. Goseki classification

The Goseki classification divides GC, based on intracellular mucin production and the degree of
tubular differentiation, into four groups: group I: tubules well differentiated, intracellular mucin
poor; group II: tubules well differentiated, intracellular mucin rich; group III: tubules poorly dif-
ferentiated, intracellular mucin poor; group IV: tubules poorly differentiated, intracellular mucin
rich. Most studies, which have focused on prognostic significance, did not confirm a prognostic
independent value of this system [10][7].
Although current histopathological systems influence endoscopic or surgical choices, they are still
insufficient to guide precision treatments for individual patients. Not only new therapies, but a new
classification for GC is urgently needed as well.

1.4. The precancerous cascade

The intestinal type of gastric adenocarcinoma is preceded by a sequence of histological lesions
(known as Correa´s cascade) with well-defined characteristics: non-atrophic gastritis, multifocal
atrophic gastritis without metaplasia, intestinal metaplasia of the complete type, intestinal meta-
plasia of the incomplete type, dysplasia [16, 17], (Figure 1-2), ([18], [13], [26]). This precancerous
process was described in 1975 by Correa et al. based on observations in Colombian populations at
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high risk of GC [15]. Following the identification of H. pylori as a causative agent of gastritis in
1983 [67], it was recognized that this process is initiated and sustained by the infection with this
bacterium and may last for decades preceding the malignant transformation.

Figure 1-2: Correa’s precancerous cascade. A, Normal gastric mucosa. B, Non atrophic chro-
nic gastritis. Abundant inflammatory infiltrate in lamina propria with well-preserved
glands observed in the deeper half of the mucosa. C, Multifocal atrophic gastritis
without intestinal metaplasia. Marked loss of glands, with prominent inflammatory
infiltrate and proliferation of fibrous tissue in the lamina propria. D,Intestinal meta-
plasia, complete type. Goblet cells alternating with absorptive enterocytes that present
well-developed brush border. E, Intestinal metaplasia, incomplete type. Goblet cells
alternating with columnar cells that contain mucin droplets of variable sizes. F, Dys-
plasia. Epithelium with high-grade dysplasia (lower half of the photograph) occurring
in a background of incomplete metaplasia (observed in the foveolar superficial epithe-
lium). (HE; original magnification: A-C x100; D-F x200).Images A-Care reproduced
with permission reference 60. [14]

Complete intestinal metaplasia is characterized by well-developed goblet cells alternating with ma-
ture absorptive cells. Paneth cells may also be observed. Incomplete metaplasia consists of goblet
cells alternating with columnar mucous cells containing varying amounts of intracytoplasmic mu-
cin. Dysplasia (glandular intraepithelial neoplasia or non-invasive neoplasia) is a neoplastic lesion
limited to the epithelium, without invasion of the lamina propria, and is classified mainly as low
grade and high grade. Low-grade dysplasia is characterized by crowded glands lined by colum-
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nar cells with hyperchromatic, elongated, and pseudo-stratified nuclei that maintain polarity with
respect to the basement membrane. Low-grade dysplasia shows minimal glandular architectural
alteration and the cells show mild to moderate atypia. In high-grade dysplasia, dysplastic cells are
usually cuboidal rather than columnar, with a high nuclear-cytoplasmic ratio, loss of nuclear pola-
rity, and prominent nucleoli.

China and Colombia are the regions with the highest incidence of gastric adenocarcinoma, [20].
After the stages described above, the stomach tumors that are based on the tubules and originate in
the gastric mucosa are called Adenocarcinoma we pass to our focus of study, intestinal or tubular
type adenocarcinoma can be classified according to WHO by counting the structural observation
of tubules, generally, pathologists perform this count on the area of cancer, but in this investigation
the entire image will be made trying to obtain more significant information about the environment,
which determines the severity of gastric cancer, it is also possible to observe that the dysplastic
processes of pseudostratification or stratification of the epithelial cells that cover the gland, are
doubled or tripled, filling with lymphocytes. The infilter carcinoma is the stage more advance [32]
begin to form polyp as large than 5cm which is classified with the borrmann stadio then become at
metastasis by overcoming the lymph nodes that reach other systems of the human body.

1.5. Glandular and Nuclear Architecture

Some glands exposed to this stress, usually change their shape and their normal size, causing hyper-
chromatic in nucleus, stromal fibrosis triples, the light or lumen ceases to have an ovoid or regular
shape, the superficial epithelium is eroded and foveal glands reflect a tortuous and irregular shape
tending to ulcerate easily. Normally, when the architecture of the abnormal mucosa is destroyed,
it becomes an irregular and tortuous structure, a key moment to start performing classification
analysis [27]. Initially, overgrowth is sought by bacteria, by epithelium, by nucleus, by cell, and
if there is mucin generation, since this causes the appearance of piano keys to be lost due to
overlapping with another cell; It is also important to analyze the spatial relationship of the gland
vs the stroma, since under normal conditions the spatial relationship is 50 % - 50 %, and under
abnormal conditions the stroma continues to grow up to 70 % - 90 % of the total cell.
For the pathologist it is of vital importance to obtain a complete and clear image to give a good
orientation to the slide, since one can run with the risk of seeing only the superficial part and not
being able to see the deep of the epithelium where the formation of a tumor [24]. In this exercise
the specialists focus their attention on making a detailed diagnosis of the tumor, thus observing
more healthy regions within the same biopsy.

When the nucleus already reaches 80 % of the cell, it is where the tumor is poorly differentiated
that it is growing rapidly, the interstitium is minimal, and should be something that can be seen
easily, but the cells are back to back preventing the comparison, all tumor gland cells are packed
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like mitosis cells, there is a lot of chromatin and tumor apoptosis cells dividing very fast.

We have a series of substances or situations that make these mechanisms that control this cell cycle,
develop a genetic variation, abandoning the normal cycle of execution, affected by epigenetics
influenced by the environment.
The body glands produce hydrochloric acid by decomposing the food, whereas the glands of the
antrum produce protective substances such as mucus, which protect the normal structure of the
stomach from the acid produced by the corporal glands [23], it is clear that the mucosecretory
glands that have inflammatory cells are normal in that region since they are also generally located
in blood capillaries fibroblasts.

1.6. Criteria to Give a Tubular Differentiation

For the pathologist it is important to have the complete image of the biopsy to know in the context
and the distribution of the glands and to know if it is talking about a corporal gastric mucosa or an
antral gastric mucosa. See figure 1-3 and 1-4 the difference between an antral biopsy and a body
biopsy.

Figure 1-3: Visual scales of inflammatory infiltrates, grades 0 - 1 - 2 - 3 of the Sydney System
renewed, 1994. [42]

Several studies show that the work of a pathologist is to identify abnormal regions that influence
cell death, also called tumors, and it is on these regions where the tumors can be classified accor-
ding to their cell density, World Health Organization (WHO)[36] proposes to classify glandular
density into three differentiation grades:

Grade 1 (Well differentiated): greater than 95 % of well-formed cells.
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Figure 1-4: Body mucus, Antral mucosa. Visual scales of the degree of atro to antral mucosa and
body 0 - 1 - 2 - 3 (normal / atro to mild, moderate, severe) of the renovated Sydney
System, 1994 (reproduced with the permission of Prof. RM Genta).

Grade 2 (Moderately differentiated): between 50 % and 95 % of well-formed cells.

Grade 3 (Poorly differentiated): less than 49 % of well-formed cells.

To perform this differentiation, the tumor is usually already in a state of adenocarcinoma and it is
just at this moment that they begin to analyze and to generate different subjective readings among
pathologists since this appreciation is quite appreciative and truly subjective to the experience of
each pathologist. Therefore, it was necessary to take into account basic concepts of both gastric
mucosal structures and cellular structures, to understand the changes in the stroma and cell pa-
renchyma, and therefore observe losses in the structure between each cancer state.

An image tells the whole process that has a state so far, that is, if it is diagnosed as dysplasia the
image of the biopsy evidences all stages antecedent to it in the same or in different regions; [56]
The first thing is to determine the area where the existence of cancer is perceived, then determine
what type of cancer it is, and if it is tubular to determine if it is in any of the differentiation men-
tioned by the WHO percentage of well-formed tubules.

According to the conference in Vienna and Padova [19] to achieve operation analyze how gastric
biopsies should be reported, it was decided thanks to the consensus to define as grade 1 the normal
state, grade 2 to the presence in amatoria, grade 3 to the difficulty to differentiate between inflam-
matory and tumoral, grade 4 to tumor and grade 5 to fully developed tumor, grade 5 is only used
when all stomach is removed, for biopsies grade 4 is understood as the maximum degree of the
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tumor. Adachi et al. [1] they showed that histology type is important for estimating the tumor pro-
gression and outcomes of patients with gastric carcinoma. In addition to the depth of wall invasion
and status of lymph node metastasis, histologic type, including well or poorly differentiated type,
should be evaluated in the management of GC.

1.7. Research Problem

Quantification of glands might help to determine the aggressiveness of cancer; however, as it
mainly relies on the visual interpretation of a pathologist, it unavoidably leads to a certain level
of subjectivity[34], consequently, automated tools could help to standardize diagnostic processes.
The underlying hypothesis of this investigation is that the use of visual characteristics that mo-
del the geometry of the glands and their cellular properties could help to determine the disease’ s
aggressiveness.

1.8. Contribution

A main contribution of this manuscript are

local and contextual features that describe glandular nuclei

A gland description in terms of the previously nuclei features

A complete approach to predict survival after a year in GC patients. This estimation was
correlated with the degree of the disease in spite of the small data set for evaluation.



2 An automatic segmentation of gland
nuclei in gastric cancer based on
local and contextual information

Presented on ”Biomedical Information Processing and Analysis - A Latin American perspective”. SAMBA:
SIPAIM, MICCAI BIOMEDICAL WORKSHOP, March, 2019.

Analysis of tubular glands plays an important role for gastric cancer diagnosis, grading, and prognosis;
However, gland quantification is a highly subjective task, prone to error. Objective identification of glans
might help clinicians for analysis and treatment planning. The visual characteristics of such glands suggest
that information from nuclei and their context would be useful to characterize them. In this paper we present
a new approach for segmentation of glandular nuclei based on nuclear local and contextual (neighborhood)
information. A Gradient-Boosted-Regression-Tree classifier is trained to distinguish between glandular nu-
clei and non-glandular nuclei. Validation was carried out using a dataset containing 45.702 annotated
nuclei from 90 1024x1024 fields of view extracted from gastric cancer whole slide images. A Deep Learning
model was trained as a baseline. Results showed an accuracy and f-score 5.4 % and 23.6 % higher, respec-
tively, with the presented framework than with the Deep Learning approach.
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2.1. Introduction
Gastric cancer (GC) is among the most diagnosed cancers and the second most frequent cause of cancer-
related death worldwide [40]. Geographically, the highest incidence of GC is in Asia, Latin America, and
the Caribbean [[?],[?]]. In Colombia, GC is the first cause of cancer-related death, representing a 15 % of all
cancer deaths, with a high incidence in the Andean zone, especially in the departments of Nariño, Boyacá,
and Cundinamarca. Currently, it is considered a major public health problem that has generated an expense
of more than 47 million USD in five years [11].

GC comprises several kinds of lesions with different severity grades. From such lesions, adenocarcinoma
is the most common, representing more than 90 % of all GC [44]. Characterization and quantification of
the adenocarcinoma might establish plausible chains of events that improve the disease understanding and
reduce its mortality rates. Diagnosis is usually reached by an endoscopic biopsy of the stomach which is
processed and analyzed by pathologists who determine the degree of malignancy [69]. One of the most
common approaches to identify and grade gastric adenocarcinomas is by identifying and estimating the
density of glands. Low-grade lesions are characterized by the presence of well/moderately differentiated
glands (Figure 2-1-a). In high-grade lesions, glands are highly irregular and poorly differentiated (Figure 2-
1-b) [[49], [44]]. Identification of glands plays an important role not only in diagnosis but also in establishing
some prognosis [49]. An accurate quantification is therefore essential for both the decision making flow and
the treatment planning. Unfortunately, this process has remained highly subjective and prone to error. In this
context, automatic measures may contribute to identify tubular glands on GC samples.

Figure 2-1: Representative images of Hematoxylin-Eosin stained tissue from gastriclesions.
a)Well-differentiated glands, b)Poorly-differentiated glands.

This work introduces an automatic strategy that exploits nuclear local and contextual information to iden-
tify gland nuclei in fields of view (FoVs) extracted from gastric cancer whole slide images (WSIs). The
present approach starts by automatically segmenting nuclei with a watershed-based algorithm [65]. Each
nucleus is then characterized by two types of features: first, its own morphological properties (size, shape,
color, texture, etc.), second, its neighbor nuclei features within a determined radius. Such features are used
to train a Gradient-Boosted-Regression-Tree (GBRT) classifier to differentiate between gland-nuclei and
non-gland-nuclei. Unlike other state-of-the-art methods, any feature in this approach exploits nuclei relative
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information, i.e., any nucleus information is always relative to how such feature is with respect to its su-
rrounding nuclei. This strategy is compared with a Deep Learning (DL) model that was trained to identify
gland-nuclei. This DL model receives as input patches from WSI and outputs probability maps that are thres-
holded. A watershed-based algorithm segments then the binary output map and splits the connected/overlaid
cases to set the final candidates.

2.2. Methodology

2.2.1. Preprocessing: Nuclei Segmentation
A watershed-based algorithm [65] is applied to segment nuclei, generating a mask with the position of each
nucleus. Each detected nucleus is then assigned to the class either glandular nuclei or non-glandular nuclei
(See Figure 2-2).

Figure 2-2: Description of the nuclei segmentation. a)Original image, b)Glandular nuclei mask,
c)Non-glandular nuclei mask.

2.2.2. Nuclear Local and Contextual Information (NLCI)
In H&E images, glandular nuclei are generally distinguished from other cell nuclei by their orientation,
color, oval shape, eosinophilic cytoplasm, and proximity to other similar nuclei. For this reason, after nuclei
were segmented, a set of low-level features were extracted, including shape (nuclei structural area, ratio bet-
ween axes, etc.), texture (Haralick, entropy, etc.), and color (mean intensity, mean red, etc.). Each nucleus
was represented by this set of local features. Additionally, for each nucleus, a set of circles with incremental
radio of k = dL x 10; dL x 20; dL x 30 pixels were placed at the nucleus center (begin dL = 20 pixels the ave-
raged nuclei diameter), aiming to mimic a multi-scale representation. Finally, a set of regional features was
computed within each circle and used to characterize each of the segmented nuclei. These features measure
the neighborhood density and relative variations in color, shape, and texture.

A set of 57 local and contextual features were extracted from each image nuclei and the 33 most discri-
minating characteristics were selected by distribution analysis and Infinite Latent Feature Selection (ILFS)
algorithm [57]. A GBRT classifier [30] was then trained to differentiate between the glandular nuclei and
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non-glandular nuclei classes. Specifically, we used an adapted GBRT framework[6] which emphasizes the
minimization of the loss function.

2.2.3. Baseline

State-of-the-art

The baseline corresponded to a state-of-the-art deep learning approach known as Mask Region-based Con-
volutional Neural Network (R-CNN). This modification of the Fast R-CNN algorithm [31] has been used in
the Kaggle 2018 Data Science Bowl challenge for identifying wider range of nuclei across varied conditions
[35]. It uses a deep convolutional network with a single-stage training and a multiscale object segmentation.
Mask R-CNN outputs an object detection score and its corresponding mask [31].

DL model

The DL model was trained using a set of patches extracted from the FoVs. The positive class patches corres-
pond to the area covered by the bounding box of each gland nucleus while the negative class patches were
taken from the background, i.e., regions with non-gland nuclei. Aiming to increase the number of training
samples, different transformations (e.g., rotation and mirroring) were applied to the patches. Model training
was carried out using a total of 20 epoch cycles with 100 steps each.

Figure 2-3 presents the architecture of a trained DL model for the exploratory stage. A random extraction
of a Region of Interest (RoI) is performed. This RoI is projected to a convolutional network that generates a
feature map. These features are introduced to the RoI pooling layer for further processing. At the last stage,
fully connected layers generate the desired outputs, including the gland nuclei candidate bounding box and
mask.

Deep
ConvNet

RoI
Projection

Conv
Feature map

Figure 2-3: Mask R-CNN work flow. Figure extracted and adapted from [31]
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2.3. Experimentation and Results

2.3.1. Dataset
The dataset consisted of 90 FoV of 1024 x 1024 pixels at 40x extracted from a set of H&E WSI taken from 5
patients who were diagnosed with GC. The WSI were provided by the Pathology Department of Universidad
Nacional de Colombia. A total of 45.702 glandular nuclei were manually annotated, being 12.150 glandular
nuclei while the remaining 33.552 corresponded to other structures (non-glandular nuclei).

2.3.2. Experiments
Two experiments were carried out. The first attempted to classify between glandular nuclei and non-glandular
nuclei using the NLCI approach. A Random Cross validation method with 10 iterations was used. At each
iteration, 70 % of the whole set of FoV was used to train the GBRT classifier and the remaining 30 % was
used to test the trained model. Finally, the measured performances along the 10 iterations were averaged.

The second experiment aimed to identify glandular nuclei using the DL model. For this purpose, 60 FoV
were used to train the model and the remaining 30 for testing. In this case, glandular nuclei detection was
assessed based on the number of detected nuclei centroids that correctly overlapped with the ground truth
nuclei, judged as correct when centroids were within one nuclear radius.

2.3.3. Results
Table 2-1 presents different performance metrics for both assessed approaches. NLCI achieved an accuracy
of 0.977 and an F-measure of 0.955, while R-CNN yielded corresponding accuracy and F-measures of 0.923
and 0.719, respectively. For the qualitative results, Figure 2-4 shows the resulting gland nuclei segmentation
from both approaches, where R-CNN generates its own masks of single gland nucleus presented by indivi-
dual colors.

Metrics NLCI R-CNN
Accuracy 0.977 0.923
Precision 0.959 0.585
F-score 0.955 0.719

Table 2-1: Comparative measurements for both approaches.

2.4. Conclusions
In this chapter, two different approaches to automatically detect glandular nuclei on gastric cancer ima-
ges were presented and compared: a model based on nuclear local and contextual information and a DL
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Gland nuclei Segmentation 
showing, the ground-truth label

Nuclear Local and Contextual 
Information (NLCI)

R-CNN with each gland nuclei 
candidate individually colored

Figure 2-4: Gland nuclei Segmentation showing, a)The ground-truth label , b)NLCI, and c)R-
CNN with each gland nuclei candidate individually colored.

model. Results demonstrate that local and contextual features are appropriate to describe the structural fea-
tures of tubular glandular nuclei. Despite the DL model presented good results, this approach requires a
powerful/expensive infrastructure, long training times, and huge quantities of annotated data. Due to the
lower precision of the model, it indicates the that only local information its taken into account. Future work
includes quantification of glands to establish correlation with cancer grade and patient prognosis. [38]
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Automatic detection and quantification of glands in gastric cancer may contribute to objectively measure
the lesion severity, to develop strategies for early diagnosis, and most importantly to improve the patient
categorization. This article presents an entire framework for automatic detection of glands in gastric can-
cer images. This approach starts by selecting gland candidates from a binarized version of the hematoxylin
channel. Next, the gland’s shape and nuclei are characterized using local features which feed a Random lo
Cross validation method classifier trained previously with manually labeled images. Validation was carried
out using a data-set with 1.330 annotated structures (2.372 glands) from seven fields of view extracted from
gastric cancer whole slide images. Results showed an accuracy of 93 % using a simple linear classifier. The
presented strategy is quite simple, flexible and easily adapted to an actual pathology laboratory.
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3.1. Introduction

Figure 3-1: Description of the lumen segmentation. a) Well differentiated (More than 95 % of the
tumor is composed of Healthy glands), b) Moderately differentiated (50 % to 95 % of
the tumor is composed of Healthy glands) , c) Poorly differentiated (49 % or less of
the tumor is composed of Healthy glands).

Gastric cancer (GC) remains an important public health problem. [39] About one million new cases have
been yearly reported, becoming the fourth most common cancer and the second leading cause of cancer
deaths worldwide. [63] This cancer has been related with the infection of Helicobacter Pylori [66] yet its
physiopathogenesis is still unknown and many other factors have been correlated with. Several studies have
shown that characterization and quantification of GC may improve understanding about the chain of events
that triggers the disease.[69]

Adenocarcinoma is the most common type of GC. The most common strategy to classify adenocarcinoma
is to estimate the degree of gland differentiation. The world health organization (OMS) established [36] that
grades 1 and 2 conserve most morphological gland properties, basically shapes and sizes. Higher degrees
are characterized by more irregular and hyperchromatic structures (Fig.3-1). Gland identification supports
diagnosis, categorization and prognosis of the patient. Therefore, precise quantification is essential for both
decision making and treatment planning. Unfortunately, so far, this process has remained highly subjective
and prone to errors. [21]

3.1.1. State-of-the-art
Despite the importance of detection and quantification of glands in gastric cancer, few methods are reported
in the literature. Ficsor et al.[29] analyzed 79 cases of gastrointestinal biopsies stained with hematoxylin and
eosin (H&E). They determined a set of heuristic cytometric parameters and use them to classify cases as nor-
mal mucosa, gastritis, or adenocarcinoma. Three nonparametric methods established a general correlation
of 86 % between the number of glands and the particular pathology. Similar works [51] have explored detec-
tion of glands in breast tissue by integrating image information at three scales: (1) low level or pixel values,
(2) high level or object detection, and (3) relationship between structures. A Bayesian classifier assigns then
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a probability class to each pixel. Doyle et al. [22] performed segmentation of glands in prostate cancer. The
authors used morphology priors to achieve gland segmentation. Then, SVM classified tissue patches contai-
ning benign epithelium and the prostate cancer degrees 3 and 4. Results suggested quantitative analysis of
the gland morphology may play a significant clinical role in distinguishing different prostate cancer degrees.

3.1.2. Contribution
This chapter presents a novel automatic strategy that exploits morphological information from lumens and
nuclei to detect glands in gastric samples. The method is simple, computationally non-expensive, and inde-
pendent of parameter tuning. The main contribution of this strategy is a set of discriminating visual charac-
teristics that model the geometry of actual glands and their cellular properties.

3.2. Methodology
Gland candidates are firstly repaired in a binary version of the hematoxylin channel (panel (c) of figure
3-2). The original image has been previously separated into the two hematoxylin and eosin channels.[65]
Big objects in the binary image are then selected, dilated and superimposed with the original image (panel
(d) of figure 3-2). On the other hand, nuclei are segmented by a watershed method (panel (e) of figure 3-2)
and the cells intersecting the gland candidate (panel (f) of figure 3-2) shall be used to characterize the gland
candidate. Overall two types of features will be extracted, geometric from the gland candidate in panel (c)
and cellular from the cells surrounding the gland, as illustrated in panel (f) of figure 3-2. This approach,
compared to other cutting-edge methods, is simple, very easy to use and implement while it presents good
performance, fast training times and precise results. The whole method is further presented hereafter.

3.2.1. Preprocessing
The workflow of the proposed method is composed of the following stages. First, the digitization of a signifi-
cant set of cases of previously diagnosed GC, existing in the sheet banks of the district network of hospitals.
Then, assembling each one of sheets digitization, this process consists in the reconstruction of virtual plate
that is stored in a server in ( http://cimalab.unal.edu.co/microscopio/viewer?wsi=002-14reader=jpeg), in this
case, the corresponding plates of H&E and a process that will allow the overlapping of the sheets.

3.2.2. Candidate glands
Provided that glands are characterized by a lumen surrounded by a layer of cells, the whole method is
focused on detecting this type of structure. A first step is a color deconvolution [46] to obtain the H&E
(hematoxylin and eosin) channels. Then, a Gaussian filter is used to smooth the hematoxylin channel and
a threshold is set at 90 % of the max intensity to detect white big regions, see fgure 3-2(b). The number of
candidate glands is reduced by applying an initial erosion with a disk-structuring element of 9 pixels (about
half diameter of the smallest nucleus), followed by filling eroded lumens and removing small objects (less
than 10 pixels), see figure 3-2(c). Finally, a set of regions (candidate glands) are obtained.
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3.2.3. Nuclei surrounding the candidate gland

Nuclei were segmented by using the method proposed by Veta et al [65]. This starts with a color deconvo-
lution of the H&E image to isolate the hematoxylin channel.[37] Then, a fast radial symmetry transform is
applied to find nuclei related markers and from there the watershed algorithm detects nuclei as connected
components (figure 3-2 panel (e)). The candidate gland obtained from the binary image is then dilated by
a disk-structuring element of 60 pixels (maximum diameter of the largest nucleus) and the set of nuclei
overlapping this regions is then selected (figure 3-2 panel(f)) for gland characterization.

Figure 3-2: The process to obtain candidate glands: a) Original Image, b) Hematoxylin Image, c)
Candidate glands d)Dilation, e) Nuclei Detection, f)Nuclei surrounding the candidate
gland, g) Feature matrix.

3.2.4. Feature extraction

Each candidate region is then described by a set of nuclei characteristics extracted from the nearest nuclei
neighbors of the dilated version of the gland candidate boundary. Different features are extracted from this
set of cells, namely shape (area, perimeter, texture, orientation), color (intensity and entropy of the channels)
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and distance to other nuclei.

A similar set of features is extracted from the lumen candidate, including the shape (lumen area, relation bet-
ween lumen axes), homogeneity, main orientation, Zernicke moments,[59] Haralick Textural Features[22]
and color (average intensity, mean and variance of the red channel).

3.3. Experimentation and Results

3.3.1. Dataset

1.330 Fields of View (FoV) of 1024 x 1024 pixels at 40x was extracted from a set of H&E Whole Slide
Images (WSI) from 7 patients diagnosed with adenocarcinoma (n = 3), gastritis (n = 2), and metaplasia (n
= 1) by two pathologists. The WSI were provided by the Pathology Department of Universidad Nacional
de Colombia. FoV with glands were manually annotated by at least one pathologist and used to train the
different models. A total of 11.689 structures were annotated, being 2.372 glands and the remaining 9.317
corresponded to other structures.

3.3.2. Results

The introduced method was validated by classifying the detected candidate regions as either glands or non-
glands. A Random Cross validation method with 10 iterations was used. At each iteration, 70 % of the whole
set of FoV was used to train a Gradient boosting tree (GBT) classifier [6] and the remaining 30 % was used
to test the trained model. The GBT was trained setting a shrinkage factor of 0.1, a subsampling factor of
0.5, and a max tree depth of 2. Finally, the measured performances along the 10 iterations were averaged.
Figure 3-3 presents the Receiver Operating Characteristics (ROC) curve corresponding to the classification
task and Table 3-1 presents some performance metrics. Results show that the presented approach yielded an
accuracy of 9̃0 % and an F-score of 72 %, suggesting that the introduced approach might be suitable for the
identification of glands.
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Figure 3-3: ROC
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Metrics Menu Values Sid Values
Area Under The ROC 0.933 0.003
Accuracy 0.9 0.005
Sensitivity 0.638 0.02
Specifity 0.968 0.005
Precision 0.836 0.021
F-score 0.723 0.015
Geometric mean 0.768 0.012

Table 3-1: Measurements

3.4. Conclusions
In this article, a method for automatic identification of glands in gastric tissue samples was presented. The
introduced approach exploits morphological information from both lumens and nuclei of gastric glands.
Results suggest that the introduced approach is suitable for identification of glands in gastric tissue. This
approach could contribute to objectively quantify glands and thereby grade GC lesions.
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This article presents an entire framework for analyzing survival-related gland features in gastric cancer
images. This approach builds upon a previous automatic gland detection, which partitions the tissue into
a set of primitive objects (glands) from a binarized version of the hematoxylin channel. Next, gland shape
and nuclei are characterized using local and contextual features that include relationships between color
or texture from glands and nuclei (5,120 features). A mutual information max-relevance-min-redundancy
(mRMR) approach selects hundred features that correlate with patient survival “survival vs not survival
(first year)”. Finally, ten statistically significant features (test t-student, p < 0,05) were used to set a “one-
year”survival. Evaluation was carried out in a set of fourteen cases diagnosed with pre-cancerous gastric
lesions or cancer, under a leave-one-out scheme. Results showed an accuracy of 78.57 % when predicting
the patient survival (less or more than a year), using a QDA Linear & Quadratic Discriminant Analysis.
This approach suggests there exist morphometric gland differences among cases with gastric related patho-
logy.
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4.1. Introduction

Gastric cancer (GC) incidence and mortality have been reduced over the past 70 years [61]. Despite a recent
decline, worldwide it is still the fourth most common cancer and the seventh leading cause of cancer-related
death [53],[54]. Geographically, the highest GC incidence has been reported in Japon, Latin America, and
the Caribbean [43, 28]. In Colombia, GC is the first cause of cancer-related death, representing a 15 % of all
cancer deaths, with a high incidence in the Andean zone, especially in the departments of Nariño, Boyacá,
and Cundinamarca. Currently, it is considered a major public health problem whose economic burden has
reached the 47 million USD in the last five years [12].
A GC diagnosis and stratification [34] is achieved by examining a biopsy tissue under a microscope[9].
This mainly relies upon certain level of expertise [33], a limited resource in actual pathology laboratories.
Overall, such diagnosis is not exempt of an inevitable observer bias and subjectivity. In this context, an
automatic characterization of gastric glands may objectively support diagnosis and lead to devise more
accurate indexes to predict the disease evolution. [60, 25].

4.1.1. State-of-the-art

To the best of our knowledge, few investigations have aimed to determine survival in GC populations. Wi-
lliams et al.[68] integrated multiple databases of patients diagnosed with GC including pathological, clinical,
surgical and survival information. They applied a Machine Learning methodology to characterize subgroups
of patients with gastric cancer by exploring all relationships between patient descriptors and systematically
extracted over 450,000 logical associations. A subset of more than 1000 associations identified possible
disease risk markers. Oh et al.[52] developed an automatic model to predict survival outcomes for patients
with GC using a recurrent neural network (RNN). This study enrolled 1.243 cancer patients. Results showed
a ROC AUC of 0.81 for the survival recurrent network (SRN) data test.

4.1.2. Contribution

A main contribution of this work is an automatic characterization of gastric glands together with a set of
features that might be associated with the disease aggressiveness. This set of characteristics correlates with
the survival time (±1year) in a group of patients with gastric pathology. Furthermore, these discriminatory
features are used in a classification task to build a model for predicting the patient survival time.

4.2. Methodology

A set of morphological and textural features are extracted from gastric glands automatically detected and
their nuclei [2]. Using a max-relevance-min-redundancy (mRMR) criterion these features are reduced from
about six thousand features to barely a hundred. These features are then statistically assessed to identify the
ones that better express differences and these ones are then used to train Quadratic Discriminant Analysis
(QDA) classifier.
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4.2.1. Characterization of gastric glands

(a) (b) (c) (d)

Figure 4-1: Proposed Methodology: a) Original Image, b) Gland binary mask, c) Gland candida-
tes, d) Gland Nuclei

A coarse Gland binary mask is firstly constructed [2], as illustrated in panel (b) of figure 4-1, by threshol-
ding the hematoxylin channel, previously determined by a color deconvolution technique [46]. The original
image in panel (a) is then thresholded and subtracted from a version of the image in panel (b) whose impulse
noise has been filtered out by specific morphological operations, i.e., erosion and the area operator, which
switches the binary value of all zones whose areas are smaller than a given value, see panel (c). Every gland
intersecting the image border is excluded from this analysis.

A next step is the search of gland nuclei, a process starting by segmenting all nuclei and determining which
of them belong to the gland. For doing so, gland candidates previously found are dilated by the maxi-
mum diameter of the largest nucleus (disk-structuring element of 60 pixels) and nuclei are evaluated by a
Gradient-Boosted-Regression-Trees model to distinguish between gland-nuclei and non-gland-nuclei [5],
see panel (d). This classifier was trained using a set of 45,702 manually annotated gland nuclei, characteri-
zed by shape, texture and color features presented in table 4-1. This characterization also includes local and
neighborhood analyses: while a local feature decomposes nuclei in terms of their geometric or physic cha-
racteristics, the neighborhood properties aim to capture nuclei in terms of their environment and population
features. The neighborhood analysis is basically a spatial exploration of the region surrounding a nucleus
and for doing so a set of circles with incremental radii of k = dL×10 pixels is placed at any nucleus center,
starting with the average nuclei diameter (dL = 20 pixels) until dL = 50 pixels. Neighborhood features are
computed from the nuclei inside the circles, in this case the nuclei and cytoplasm characteristics shown in
table 4-1. A nucleus is represented by a vector with 52 features which correspond to such local and neigh-
borhood descriptions.

A gland description is achieved by averaging these 52 features among the whole set of gland nuclei. The
nuclei gland is then described by a vector with 104 characteristics composed of 52 feature averages, 52
standard deviations of these features and 24 gland characteristics.
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Table 4-1: Features extracted from gland, gland nuclei and their cytoplasm.

So far exploration has been devoted to nuclei (local features) and neighborhood characteristics which are
spatially extracted from a series of circles placed at the gland nuclei. Notice these features highly depend
on the gland size and shape, two characteristics probably result of the biological sample treatment. These
features in consequence are not absolute measures and therefore the relevant relative relationships were
found out by a selection process. For doing so, an exhaustive computation of every relation between features
was carried out, v.g. mean nuclei texture

whole gland texture , making the original 104 nuclei and 24 gland features are mapped to a
new vector of 4, 992 relations, always respecting any relation is set between nuclei and gland characteristics.
Finally, the gland feature vector corresponds to the concatenation of the original vector and the previously
described relation feature vector, for a total of 5, 120 dimensions which is then pruned by the selection
process.

A feature selection is performed in two steps: First, Minimum Redundancy Maximum Relevance (mRMR)
approach is used to select relevant features [55] by minimizing the mutual information between features
and maximizing the join probability of the selected features between classes “survival vs not survival (first
year)”. Afterwards, selected features correspond to those showing significant statistical differences (test
t-student, p < 0,05) between the two survival groups.

Finally, the selected gland features are used to train a quadratic discriminant analysis (QDA) and obtain a
model to predict patient-survival time.
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4.3. Experimentation and Results

4.3.1. Dataset Acquisition

This data-set was composed of 14 cases, description shown in table 4-2. Due to the high variability between
individuals, applied inclusion and exclusion criteria are reported in table 4-3.

Table 4-2: Data-set Acquisition

Table 4-3: Inclusion and exclusion criteria

Gastric Cancer WSI were provided by Universidad Nacional de Colombia [50] and training glands were
annotated by one expert pathologist. Samples were obtained and digitized with a signed “informed consent”
that followed the Helsinki protocol [4]. Table 4-4 shows the survival-time of 14 patients, 8 survived less than
one year and the remaining 6 cases survived more than one year. The complete data set corresponds then to
these 14 cases in which the survival-time was reported.

4.3.2. Results

A total of 638 Fields of View (FoV) of 1024 × 1024 pixels at ×40 magnification were extracted from a
set of H&E WSI, digitized from the 14 patients diagnosed with adenocarcinoma (n=9), gastritis (n=2), and
dysplasia (n=3). From these FoV’s 2.076 structures were found out and characterized by the model. The
dimensionality reduction was achieved by a Minimum redundancy maximum relevance feature selection,
finding the 100 most relevant features. Afterwards, statistical differences are computed to reduce the original
set of 100 features to only the 10 most relevant characteristics, which are reported in table 4-6.
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Cases Diagnostic Year of death Years of survival
7 Adenocarcinoma 2014 0
1 Dysplasia 2014 0
2 Adenocarcinoma 2014 1
1 Gastritis 2015 1
1 Dysplasia 2016 2
1 Dysplasia 2018 4
1 Gastritis 2018 4

Table 4-4: All biopsies were taken in 2014, No survival (NS) less than 1 year = 8, Survival (S)more
than 1 year = 6.

2014 2015 2016 2017 2018

100%

93%

86%

71%

79%

64%

57%

43%

36%

50%

29%

21%

14%

7%

0

S

NS

First year

Table 4-5: Survival time - Kaplan meier plot

This last feature selection is used to train a QDA model and predict the survival time of a patient
(±1yearsurvivaltime). The model is trained using a leave-one-case out scheme validation, due to the
small number of cases. That is to say, set aside one case for testing and use the remaining 13 GC cases for
training, a task repeated 14 times. The final survival label is given by establishing the majority vote of the
predictions for all the found glands of the test case. This model demonstrated an accuracy of 78,57% for the
survival prediction task. Additionally, these 10 features are used in a multivariate regression COX model to
determine the hazard ratio in each variable of both groups, thereby establishing a risk factor for each of the
computed features. This risk ratio, or Hazard ratio, is a relative measure of how relevant a characteristic may
be. For instance, for characteristics number 2, 3, 7, 8 and 9 in table 4-6, a value greater than one suggests
that a change in the nuclei texture, cell proliferation per unit of area, the loss of cytoplasm- nuclei relation
or nuclei hyperchromatism are linked with aggressiveness of the tumor. All these features have been widely
described in most pathology manual as being important to describe aggressiveness.
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Table 4-6: Selected Features using mRMR and statistical test with Clinical interpretation

Figure 4-2: 1. Color / Texture Figure 4-3: 2. Nuclei texture
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Figure 4-4: 3.Texture / Texture Figure 4-5: 4. Orientation / Shape cell

Figure 4-6: 5. Nuclei Color Figure 4-7: 6. Cytoplasm Texture

Figure 4-8: 7. Texture / Texture Figure 4-9: 8. Cytoplasm Texture
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Figure 4-10: 9. Cytoplasm Texture Figure 4-11: 10. Cytoplasm Texture

4.4. Conclusions
This work has proposed a complete framework to determine a set of features suitable for predicting survival
time in GC patients. Yet 14 GC cases are a small sample, this work suggests they are discriminant enough as
to separate aggressive cases from those with a more benign biological pattern. Interestingly, most relevant
features highlight relations between morphometry and nuclei texture and between nuclei and glandular
texture. Future extension of this work includes the use of an extensive database as The Carcinoma Genome
Atlas [62].



5 Discussion and conclusion

This document presents first, two novel approaches that contribute to quantifying automatically glands in
histopathological GC images, and second a study that statistic experiments show that exist relevant features
that are correlated with the degree of the disease in spite of the small data set for evaluation. To discuss In the
fourth chapter, we propose a complete approach to determine a set of major features suitable for predicting
survival after a year in GC patients.
Exclusion criteria were applied to entire group of patients (35 cases), we do not have information of patient
death-cause since a public page only reported the year-of-death, but this study found that the expert’s diag-
nosis was report that most of these patients died in the same year. This probably related to the aggressiveness
of the adenocarcinoma diagnosed. In general, it was not selected according to the diagnosis, it was used a
reporting on the platform as deceased to 2019. Diagnoses were divided into two groups: survivors (6) and
non-survivors (8). 14 GC cases are not enough for complete validation, nevertheless, our work suggests a
set of discriminant features, that would be relevant in an extensive study. Unfortunately, we did not have a
longitudinal study to make comparisons with the current diagnosis of each patient, but in further work, it
will be taken into account to get a complement study.
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[13] CORREA, P: Helicobacter pylori and gastric carcinogenesis. En: The American journal of surgical
pathology 19 (1995), p. S37–43

[14] CORREA, Pelayo: Gastric cancer: overview. En: Gastroenterology Clinics of North America 42 (2013),
Nr. 2, p. 211

[15] CORREA, Pelayo ; CUELLO, Carlos ; DUQUE, Edgar ; BURBANO, Luis C. ; GARCIA, Fernando T. ;
BOLANOS, Oscar ; BROWN, Charles ; HAENSZEL, William: Gastric cancer in Colombia. III. Natural
history of precursor lesions. En: Journal of the National Cancer Institute 57 (1976), Nr. 5, p. 1027–
1035

[16] CORREA, Pelayo ; HAENSZEL, William ; CUELLO, Carlos ; TANNENBAUM, Steven ; ARCHER, Mi-
chael: A model for gastric cancer epidemiology. En: The Lancet 306 (1975), Nr. 7924, p. 58–60

[17] CORREA, Pelayo ; PIAZUELO, M B.: The gastric precancerous cascade. En: Journal of digestive
diseases 13 (2012), Nr. 1, p. 2–9

[18] CORREA, Pelayo ; SCHNEIDER, Barbara G.: Etiology of gastric cancer: what is new? En: Cancer
Epidemiology and Prevention Biomarkers 14 (2005), Nr. 8, p. 1865–1868

[19] COSATTO, Eric ; MILLER, Matt ; GRAF, Hans P. ; MEYER, John S.: Grading nuclear pleomorphism
on histological micrographs. En: 2008 19th International Conference on Pattern Recognition IEEE,
2008, p. 1–4

[20] CREW, Katherine D. ; NEUGUT, Alfred I.: Epidemiology of upper gastrointestinal malignancies. En:
Seminars in oncology Vol. 31 Elsevier, 2004, p. 450–464

[21] DE VRIES, Annemarie C. ; VAN GRIEKEN, Nicole C. ; LOOMAN, Caspar W. ; CASPARIE, Mariël K
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