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Abstract. Introduction: The advent of digital slides offers new opportunities within the practice of pathology such as the use
of image analysis techniques to facilitate computer aided diagnosis (CAD) solutions. Use of CAD holds promise to enable new
levels of decision support and allow for additional layers of quality assurance and consistency in rendered diagnoses. However,
the development and testing of prostate cancer CAD solutions requires a ground truth map of the cancer to enable the generation
of receiver operator characteristic (ROC) curves. This requires a pathologist to annotate, or paint, each of the malignant glands
in prostate cancer with an image editor software - a time consuming and exhaustive process.

Recently, two CAD algorithms have been described: probabilistic pairwise Markov models (PPMM) and
spatially-invariant vector quantization (SIVQ). Briefly, SIVQ operates as a highly sensitive and specific pattern

1These Senior authors contributed equally.
2These First authors contributed equally.
∗Corresponding author: Ulysses J. Balis, MD, Department of

Pathology, University of Michigan Health System, M4233A Med-
ical Science I, 1301 Catherine, Ann Arbor, MI 48109-0602,
USA. Tel.: +1 734 615 5727; Fax: +1 603 250 3139; E-mail:
Ulysses@med.umich.edu and Anant Madabhushi, PhD, Rutgers
The State University of New Jersey, Department of Biomedical Engi-
neering, 599 Taylor Road, Piscataway, NJ, USA. Tel.: +1 732 445
4500; Fax: +1 732 445 3753; E-mail: anantm@rci.rutgers.edu.

2210-7177/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

mailto:Ulysses@med.umich.edu
mailto:anantm@rci.rutgers.edu


252 J. Hipp et al. / Integration of architectural and cytologic driven image

matching algorithm, making it optimal for the identification of any epithelial morphology, whereas PPMM operates as a highly
sensitive detector of malignant perturbations in glandular lumenal architecture.

Methods: By recapitulating algorithmically how a pathologist reviews prostate tissue sections, we created an algorithmic
cascade of PPMM and SIVQ algorithms as previously described by Doyle el al. [1] where PPMM identifies the glands with
abnormal lumenal architecture, and this area is then screened by SIVQ to identify the epithelium.

Results: The performance of this algorithm cascade was assessed qualitatively (with the use of heatmaps) and quantitatively
(with the use of ROC curves) and demonstrates greater performance in the identification of malignant prostatic epithelium.

Conclusion: This ability to semi-autonomously paint nearly all the malignant epithelium of prostate cancer has immediate
applications to future prostate cancer CAD development as a validated ground truth generator. In addition, such an approach has
potential applications as a pre-screening/quality assurance tool.

Keywords: Pathology informatics, whole slide imaging, computer aided diagnosis, SIVQ, PPMM, digital imaging,
prostate cancer, cancer

1. Introduction

A great deal of information can be potentially
extracted from H&E-stained histologic slides. The
visual interpretation of this information requires years
of training by pathologists to render correct diagnoses.
In the past, machine vision computational approaches
(e.g. computer-aided diagnosis systems – CAD) have
been developed in an attempt to interpret this informa-
tion but, with the notable exception of GYN cytology
screening, such efforts have usually fallen short of
expectations, most notably due to lack of: algorithmic
specificity, standardization of the slide making pro-
cess, computational power and storage, or a properly
provisioned operational setting. Additionally, prior to
the advent of whole slide (WSI) technology, there
were significant microscopic image field sampling lim-
itations intrinsic to the simplistic camera/microscope
paired approach of the past.

While Pap smear review represents a non-definitive
screening procedure that results in a additional diag-
nostic procedures (such as a colposcopically-obtained
cervical biopsy) upon detection of a positive event,
histopathology review of tissue sections is gener-
ally considered as being a definitive diagnostic step,
usually leading to significant clinical management
decisions. In addition, the application of CAD to
surgical pathology specimens is incrementally chal-
lenging over Pap smears in that the former requires
the assessment of a number of features such as tis-
sue architecture, anatomic frame of reference, cellular
and nuclear morphology, admixed stromal changes,
and/or an inflammatory response, to make a final diag-
nosis. Furthermore, there is often associated metadata
in addition to the specimen sections, which the pathol-
ogist is similarly compelled to assess and integrate

with the clinical history, patient’s demographics, imag-
ing findings, and location of the tissue sample, in the
process of rendering one or more final diagnoses.

Today, with greatly improved computational capa-
bility and similarly evolved high-resolution/high-
throughput WSI technologies [2–6], the image capture
and analysis platforms are better, making it possible to
finally consider application of CAD approaches at the
whole-slide level. However, with the immense increase
in histologic imagery data set size, this newfound capa-
bility to comprehensively query entire tissue sections
is at the same time offset by a significant computational
barrier, as resultant data set size still outpaces computa-
tional throughput. Thus, there remains significant need
for highly-efficient (e.g. real time) CAD algorithms, in
order to realize real-world workflow solutions, which
can serve in a true decision support fashion at the time
of case sign-out.

Several groups are investigating the possibility of
applying CAD to prostate cancer (such as Gleason
grading [7–9]) and whole slides [10]; however, this
technology is currently not ready to be integrated into
the work-flow of clinical practice. With increasing
numbers of urologists performing saturation prostate
biopsies, having CAD to pre-screen and quantify fea-
tures within the slides would be of extreme benefit
to practicing surgical pathologists (saturation prostate
biopsies often consist of more than 20 cores, with
2–3 levels per biopsy resulting in up to 80–120 sec-
tions per patient for review). They are time-consuming
and monotonous, which can potentially lead to missed
diagnosis. Saturation biopsy, however, is an important
clinical tool in prostate cancer for work-up of small
atypical glands and low level cancers since patients
with minimal tumor burden can be surveyed with this
technique and spared morbid surgical operations. In
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addition, localized targeted therapy for prostate cancer
is still not very widely performed due to inability of
regular 12-core biopsies to detect all significant nod-
ules of prostate cancer which is commonly a multifocal
disease, could potentially be facilitated by saturation
biopsies.

When a pathologist reviews a prostate cancer case
(biopsies and tissue sections/whole mounts), there is a
systematic logical schema of assessments (sometimes
referred to as a “thought process”) that is performed
when evaluating the tissue sections. It is important to
note that the pathologist is not a passive investigator-
such that a pathologist reviews the tissue at low power
assessing the glandular architecture and if suspicious
glands are identified, actively examines them at higher
power to assess the cellular morphology, in a con-
tinuous and iterative process [11, 12]. If the high
power examination is not definitive, they might choose
another tool (like immunohistochemical staining, IHC)
to investigate the case further. Or if the initial low
power search finds nothing and if the patient has a
very high, unexplained serum PSA they may choose to
use another tool, such as deeper levels and/or re-cuts.
The “clinical judgment” occurs when the pathologist
assesses all this information to make the clinical deci-
sion of cancer or not. CAD has the potential of being
another set of tools that the pathologist will use like
any existing tool (like IHC and re-cuts), and like those
tools, he will need to know when and how to use them
and interpret their results (see Discussion below).

When designing a CAD for prostate cancer, it
be would logical (and perhaps desirable) to begin
by recapitulating the “low power/high power” set of
assessments that pathologists currently go through
when working up such a case by developing an
algorithm for each of these assessments and then com-
bining the results to get a final interpretation. The low
power/high power paradigm directly maps to the need
to explore successively smaller length scales, towards
obtaining a unified computational interpretation. An
algorithm that seeks to mimic the “low to high power”
analysis used by pathologist would have to 1) be able
to handle pattern recognition at multiple spatial scales
and 2) be fast enough to cover the large areas implied
by a low power analysis.

One such recently reported algorithm, which can
identify specific morphologies across multiple length
scales, is termed Spatially-Invariant Vector Quanti-
zation [13–15]. Briefly, SIVQ is a pattern matching
algorithm that can be used to match patterns across

a range of length scales, including nuclear, cellular
and architectural features (e.g., capable of matching
at high, medium and low magnifications, respectively)
[13]. SIVQ, as a pattern matching algorithm, differs
from other image analysis approaches in that it allows
for significantly greater matching speed. This feature
alone, in turn, allows for an interactive discovery work-
flow model. Additionally it’s utility as a discovery
tool is further amplified by its simplified user interface
and uncomplicated user training requirements. Taken
together, these attributes embody a turn-key platform
for general feature selection and pattern recognition
tasks, as encountered by non-technical biomedical sub-
ject matter experts (SMEs). For example, a predicate
image feature could be identified by a user, with this
predicate then available to search for possible matches
within the remaining image (or a library of images, for
that matter), resulting in the generation of a statistical
probability heat map of equivalency Figs. 2A, 3A, 4A).

While unambiguously a pattern matching algorithm,
SIVQ fundamentally differs from the vast plural-
ity of extant approaches in that its search operators,
with no particular angular or positional orientation,
leverage the continuous symmetry of a circle – the
only construct in nature that possesses such sym-
metry. As already reported [13], the ring vectors of
SIVQ overcome the stochastic sampling limitations
of conventional grid-based vectors including: trans-
lationally, rotationally, and chirally. The net effect of
this spatial invariance is that a single ring vector of
SIVQ can replace the need for millions of possible
stochastically derived Cartesian vectors, still yielding
equivalent performance. Thus, a concentric ring vector
set can collapse the candidate vector pool to often as
few as a single cohort of rotationally-coupled ring vec-
tors. While SIVQ can operate at multiple length scales
(high and low power), identifying vectors to capture
features such as lack of a basal cell layer (which is
a hallmark of prostate cancer) and/or various luminal
shapes is quite challenging. For example, designing a
vector to identify basal cells can be difficult as basal
cells are often distributed in a patchy and/or discon-
tinuous manner in benign mimics of cancer. In day to
day surgical practice, basal cell immunohistochemical
markers such as 34�E12 and/or p63 are frequently used
in the work–up of atypical glands to confirm the pres-
ence or absence of basal cells. Therefore, we sought
to integrate SIVQ with an algorithm whose strength
is in identifying architectural perturbations of prostate
cancer.
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A recently described image analysis algorithm that
assesses luminal architecture using Markov random
fields was introduced in Monaco et al. [12]. Markov
models provide a Bayesian mechanism for incorpo-
rating contextual information. For example, Markov
models can inherently increase the probability that a
region (e.g., pixel) is cancerous when regions (e.g.,
pixels) that neighbor it have a high probability of
being cancerous. Note that SIVQ does not consider
such contextual information when performing clas-
sification. However, integrating Markov models into
SIVQ is quite possible.

The Markov system introduced by Monaco et al.
[12] was the first system for rapidly detecting
carcinoma regions in whole-mount H&E stained his-
tological sections from radical prostatectomies. Their
detection system requires less than two minutes to
process an entire whole-mount image on a standard
PC desktop computer. They achieved this in a high
throughput manner by tailoring the algorithm to accu-
rately analyze the histological section at low resolution.
For even at low resolution, gland size and morphology
remain noticeably different in cancerous and benign
regions [12]. This motivated the following biologi-
cally driven algorithm: Step 1) glands are identified
and segmented, Step 2) the segmented glands are clas-
sified as malignant or benign, and Step 3) the malignant
glands are consolidated into continuous regions indi-
cating the spatial extent of cancer. The classification
of individual glands (Step 2) leverages two simple, but
effective, features of biological relevance: 1) glands
size and 2) the tendency for proximate glands to share
the same class. The second feature describes a spatial
dependency that exists among the glands. This depen-
dency is modeled using probabilistic pairwise Markov
model (PPMM)1, a novel type of Markov random
field.

The evaluation of CAD solutions requires a gold
standard to compare, contrast and improve diagnostic
performance. This requires a pathologist to annotate
an image to identify cancer and non-cancerous areas.
Traditionally, this is done where a pathologist circles
the tumor nodule on the digital slide. However, in the
case of prostate cancer, when tumor nodules are cir-
cled, it often includes benign stroma and lumenal white
space. Thus, if performing a pixel-by-pixel analysis,

1 Note the PPMM will be used to refer to the entire algorithm
for detecting carcinoma in histological sections, and not only to the
Markov models that this algorithm employs.

such as by SIVQ, these benign areas would be anno-
tated as cancer. Therefore, the ideal annotation would
be done on a cell by cell basis, but human annotation
at this level is usually prohibitively time and resource
intensive. Thus, having a CAD algorithm that could aid
in the “painting” of the majority of the tumor epithe-
lium would enable the pathologist to spend more time
on the more challenging and critical task of identify
the atypical/suspicious glands and on Gleason grading
[16–19].

By recapitulating algorithmically how a pathologist
reviews prostate tissue sections using an algorithmic
cascade of PPMM and SIVQ, where PPMM identified
the glands with abnormal lumenal architecture, and this
area was then screened by SIVQ to identify the epithe-
lium. We qualitatively and quantitatively show that
this approach improves the identification of malignant
prostate glands.

2. Materials and methods

2.1. Images

Three WSI data sets from the Monaco et al. [12]
data set were analyzed for this study; for a detailed
description the reader is directed to Monaco et al.
[12] (IRB #E09-481). Briefly, whole mount histolog-
ical sections of the prostate gland were cut into 4
quadrants for three prostatectomy specimens which
were then formalin fixed and paraffin embedded. H&E
stained tissue section were subsequently digitized at
20× magnification (0.25 um per pixel) via an Ape-
rio ScanScope XT scanner, as previously described. A
digital slide from three separate prostatectomy speci-
mens, representing one quadrant with prostate cancer,
was used in this study. Pathologists at the Univer-
sity of Pennsylvania circled the cancerous regions
using Aperio’s ImageScopeTM software tool. Ground
truth maps of annotated malignant epithelium were
painted by pathologists at the University of Michigan
using the GNU Image Manipulation Program (GIMP,
www.gimp.org).

For the PPMM and SIVQ analysis, the SVS files
were down-sampled 1/16 and 1/4 respectively to
decrease the time for computational analysis.

All images reported here are available at the WSI
repository (www.WSIrepository.org) as described by
Hipp et al. [20, 21].

www.gimp.org
www.WSIrepository.org
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2.2. Spatially-Invariant Vector Quantization
(SIVQ)

SIVQ is unique in that it uses a set of rings
instead of a block. A ring is the only geometric
structure in two-dimensional space besides a point
that exhibits continuous symmetry. With the use of
a series of concentric rings, it is possible to reduce
the total set of potential matches, intrinsic to a
two dimensional orientation problem, into a greatly
simplified linear pattern matching problem, where
individual rings are iteratively assessed, along all
possible rotational configurations. Greater specificity
in feature matching can be addressed by creating a
family of concentrically-nested sub-rings, which all
rotate in tandem, as iteratively searching is performed.
Sensitivity of this construct can be enhanced by
allowing for relaxation of the rotational lock, thus
allowing for rotational “wobble” between adjacent
rings, which in turn, allows for greater likelihood
of pattern patching between predicate and candidate
features. With increasing wobble comes increasing
sensitivity. Lastly, adjusting the ring diameter allows
for selection of candidate feature from different length
scales; constellations of such variegated ring vectors
allows for the creation of compound sets of vectors
that exhibit enhanced specificity and sensitivity, poten-
tially across a number of image feature classes and
length scales (allowing for concurrent gating of both
tissue architecture and cytologic features). For further
details, please refer to Hipp and Cheng et al. [13].

2.3. Probabilistic Pairwise Markov Model
(PPMM)

This model was previously described in Monaco
et al. [12] with the following modification. First, the
glands were segmented and then labeled as malig-
nant or benign based on their area and their proximity
to other malignant/benign glands. The sensitivity of
the system can be adjusted by modifying the value
of the user-defined parameter α ∈ [0, 1]. To associate
a probability of malignancy with each gland we first
determine the results of the CAD system for all α ∈
{0, 1/200, 2/201, ... , 1} [12]. For each gland, we then
record the fraction of these 201 values for which the
CAD system labels it (i.e., the gland) as malignant;
this fraction is the probability of malignancy. To cre-
ate a pixel-wise probability measure, each pixel was

assigned a weighted average of the probabilities of all
the surrounding glands. Specifically, the contribution
(weight) of each gland was generated from a Gaussian
function of distance from the centroid of that gland to
the pixel under consideration.

The output of the PPMM analysis was painted onto
the image. The statistical threshold selected for match-
ing events was empirically adjusted to optimize for
sensitivity.

2.4. PPMM prescreening followed by SIVQ

The PPMM algorithm was run to identify suspi-
cious areas with abnormal lumenal architecture and
was adjusted to optimize for sensitivity. All of the areas
that were selected by PPMM were then fed to SIVQ. A
single vector from each case (total of 3 vectors for the
3 cases, vector size ranging from 4–7 pixels in diam-
eter and selected to capture the hyperchromatic nuclei
and adjacent glandular cytoplasm) was used to analyze
the PPMM selected areas and identify the malignant
epithelium.

3. Results

3.1. Histopathologic analysis as determined
by a pathologist

High resolution digital images from whole slide
scanning of H&E-stained whole-mount prostate tis-
sue sections from the data set of Monaco et al. [12]
were used for this study. The areas of cancer had been
previously annotated (circled in red) by pathologists as
shown in Fig. 1A, C, E. The images were also reviewed
by pathologists at the University of Michigan and the
malignant epithelium was annotated (painted in green)
as shown in Fig. 1B, D, E).

The first case shows an area of prostatic adenocar-
cinoma (Gleason Grade 3 + 3 = 6) in three foci in the
lower left corner (Fig. 1A). The second case has a tumor
nodule in the lower right hand corner that is a Glea-
son Grade 4 + 3 = 7 (Fig. 1C). The third case contains
4 tumor foci in the middle left and bottom center con-
sisting of a Gleason Grade 3 + 3 = 6 pattern Fig. 1E).
Note that since PPMM leverages luminal architecture
to detect cancerous regions, the algorithm can have
difficulty detecting high-grade cancer (e.g., grade 5),
which may not produce lumina. This limitation was a
deciding factor in our choice of test images.
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Fig. 1. Ground truth maps of the H&E stained prostate tissue section. Digital slides from the Monaco et al. [12] data set were used for this study.
3 H&E stained prostatic tissue sections had been scanned into digital slides. The cancerous areas were annotated (circled) by pathologists in red
(A, C, E). Additionally, the malignant prostatic epithelium was annotated (painted) by a pathologist in green (B, D, F). (Colours are visible in
the online version of the article; http://dx.doi.org/10.3233/ACP-2012-0054)

3.2. Spatially-Invariant Vector Quantization
analysis: To identify prostatic epithelium

Ring vectors, containing a portion of the hyperchro-
matic nuclei and adjacent glandular cytoplasm (see
insets of Figs. 2A, 3A, 4A) were selected from the
malignant epithelium and used to analyze the entire tis-
sue section for each case. The resultant threshold map
is shown in Figs. 2B, 3B, 4B. This resulted in the iden-
tification of large areas of both benign and malignant
epithelium in all 3 samples.

3.3. Probabilistic Pairwise Markov Model
analysis: To identify suspicious regions based
on abnormal lumenal architecture

PPMM – which, as mentioned previously, refers
to the entire CaP detection process, and not sim-
ply the Markov model – was performed as described
by Monaco et al. [12]. For the first sample, PPMM
identified two of the three cancer foci (Fig. 2B). It
also identified the focus in the upper left of crowded,
lobulated small benign atrophic glands (supplemen-
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Fig. 2. SIVQ, PPMM, PPMM-SIVQ analysis of sample #1. Using SIVQ, a ring vector was selected to identify the prostatic epithelium. The
resultant thresholded heatmap is shown in Panel A. Nearly all the epithelium was identified. The same specimen was then analyzed with PPMM.
The resultant thresholded heatmap is shown in Panel B. PPMM identified 2 out of the 3 cancer foci. The algorithm cascade of PPMM followed
by SIVQ was then used to analyze the specimens. The malignant epithelium within 2 of the 3 cancer were identified and annotated in Panel C.
To quantitatively assess and compare the performance of SIVQ to PPMM-SIVQ, an ROC curve was generated and shown in Panel D (SIVQ is
red, PPMM-SIVQ is blue). PPMM-SIVQ far exceeds the performance of SIVQ alone when compared over the range of specificities achieved
by PPMM-SIVQ Note that since PPMM-SIVQ applies SVIQ only to a subset of the tissue (which is determined by PPMM), its performance
is bounded by the maximum sensitivity and minimal specificity established by this subset. This explains why the PPMM-SIVQ ROC curve
terminates abruptly. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/ACP-2012-0054)

tal Figure 1A) and a few atrophic glands just above
and to the left of the two tumor foci at the bottom
(Table 1).

In the second sample, PPMM identified nearly the
entire tumor nodule in the lower right; however, it
did not identify the malignant glands that were above
the severely dilated benign glands (Fig. 3B). It also
identified at the very bottom of the tumor nodule,
a focus of medium and large acini that looked very
similar to the tumor nodule. Upon further review, it
is favored that these glands are malignant and would
need immunohistochemistry stains to confirm (supple-
mental Figure 1B). In addition, it identified adjacent
prostatic intraepithelial neoplasia (PIN) at the far left of
the tumor nodule (supplemental Figure 1C) (Table 1).

In the third sample, PPMM identified three of the 4
tumor foci (Fig. 4B). It identified two additional foci
in the lower right hand corner of the specimen that
had artificial white tissue spaces in the stroma (supple-
mental Figure 1D). While it identified the tumor foci
in the middle of the specimen, it also identified numer-
ous crowded, lobular, large and small benign glands
(Table 1).

3.4. PPMM prescreening followed by SIVQ
(PPMM-SIVQ)

Using an algorithmic cascade approach [1], the areas
identified by the PPMM algorithms suspicious area
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Table 1

Qualitative summary of the results from the PPMM vs. PPMM-SIVQ analysis

A
Sample # Pathologists diagnosis PPMM: True positive PPMM: False positive

1 3 foci of cancer Found 2 of 3 foci of cancer 1 area of crowded benign atrophic glands
falsely called cancer

Few atrophic acini adjacent to cancer
2 1 nodule of cancer Found almost the entire nodule of 1 area suspicious for cancer

cancer (>90%) 1 area of PIN
3 4 foci of cancer Found 3 of 4 foci of cancer 2 foci of artifactual space in stroma

Identified areas of crowded lobular
benign glands close to cancer

B
Sample # Pathologists diagnosis PPMM-SIVQ: True positive PPMM-SIVQ: False positive
1 3 areas of cancer Identified the malignant

epithelium in 2 of the 3 areas of
Identified the epithelium of 1 area of

crowded benign atrophic glands
cancer identified by PPMM Identified the epithelium of few atrophic

acini adjacto to tumor nodule
2 1 area of cancer Found almost entire nodule of 1 area suspicious for cancer

cancer >90% 1 area of PIN
3 4 areas of cancer Found 3 of 4 foci of cancer Identified areas of crowded lobular

benign glands close to cancer

The far column of Panel A corresponds to the sample number. To the right of this is a qualitative description of the pathologists diagnosis. To
the right of this is a qualitative description of the PPMM true positive results. The final column on the right is a qualitative description of the
PPMM false positive results; The far column of Panel B corresponds to the sample number. To the right of this is a qualitative description of the
pathologists diagnosis. To the right of this is a qualitative description of the PPMM-SIVQ true positive results. The final column on the right is
a qualitative description of the PPMM-SIVQ false positive results.

for cancer were selected and subsequently analyzed
by SIVQ. For sample 1, PPMM-SIVQ identified the
malignant epithelium within the two of the three can-
cer foci that was identified by PPMM (Fig. 2C). It
also identified the focus in the upper left of crowded,
lobulated small benign atrophic glands (supplemental
Figure 1A) and a few atrophic glands just above and to
the left of the two tumor foci at the bottom (Table 1).

In the second sample, PPMM-SIVQ identified the
malignant epithelium within the tumor nodule identi-
fied by PPMM. It also identified the suspicious focus
of acini at the very bottom of the tumor nodule (sup-
plemental Figure 1B) and the PIN adjacent to the far
left of the tumor nodule (supplemental Figure 1C) as
described above in the PPMM section (Table 1).

In the third sample, PPMM-SIVQ identified the
malignant epithelium within three of the 4 tumor foci.
However, it did not identify the two foci of artifi-
cial white tissue spaces in the stroma at the lower
right hand corner of the specimen (supplemental Fig-
ure 1D). While it identified the tumor foci in the middle
of the specimen, it also identified crowded, lobular,
large and small benign glands. In addition, upon fur-
ther review, another minute focus of small and large

highly suspicious glands (which was not mapped) was
not identified by PPMM/PPMM-SIVQ (supplemental
Figure 1E) (Table 1).

3.5. Quantitative assessment of SIVQ and
PPMM-SIVQ performance

The output of the SIVQ analysis is a value indica-
tive of a quality of match, from 0–255, enabling the
generation of ROC curves for the SIVQ and PPMM-
SIVQ analysis (Figs. 2D, 3D, and 4D). PPMM results
in a binary output (either the pixel value is cancer or no
cancer) and a single point in the graph indicates its sen-
sitivity and specificity. For the PPMM-SIVQ analysis,
because SIVQ is performed only on the regions identi-
fied by PPMM, it can only identify those cancer glands
that PPMM identified. This explains why the PPMM-
SIVQ ROC curves terminates early: PPMM-SIVQ is
bounded by the maximum sensitivity and minimum
specificity as established by preliminary PPMM step.

For all the samples, the PPMM-SIVQ far exceeded
the SIVQ alone ROC curve. The PPMM-SIVQ analy-
sis had approximately 90% sensitivity, 90% specificity
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Fig. 3. SIVQ, PPMM, PPMM-SIVQ analysis of sample #2. Using SIVQ, a ring vector was selected to identify the prostatic epithelium. The
resultant thresholded heatmap is shown in Panel A. Nearly all the epithelium was identified. The same specimen was then analyzed with PPMM.
The resultant thresholded heatmap is shown in Panel B. PPMM identified nearly the entire tumor nodule. The algorithm cascade of PPMM
followed by SIVQ was then used to analyze the specimens. The malignant epithelium within the majority of the tumor nodule was identified
and annotated in Panel C. To quantitatively assess and compare the performance of SIVQ to PPMM-SIVQ, an ROC curve was generated and
shown in Panel D (SIVQ is red, PPMM-SIVQ is blue). PPMM-SIVQ far exceeds the performance of SIVQ alone when compared over the range
of specificities achieved by PPMM-SIVQ. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/ACP-2012-0054)

(Sample #1), 85% sensitivity, 94% specificity (Sample
#2), and 90% sensitivity, 88% specificity (Sample #3).

Since the ROC curves of PPMM-SIVQ end at
false positive rate (i.e., 1 - specificity) below 1, the
areas under the ROC (AUCs) were determined over
the valid range and then normalized by the maxi-
mum achievable value. The normalized AUCs for
SIVQ/PPMM-SIVQ for the three samples are: Sample
#1 (0.3330/0.6586), Sample #2 (0.1872/0.7134), and
Sample #3 (0.1808/0.6451).

To assess the consistency and reproducibility of
using vectors derived from separate specimens, each
of the specimens were then analyzed with the three
ring vectors from above. In Fig. 5, the red curves repre-
sent the ROC curves from just the SIVQ analysis. Since
these vectors were designed to identify epithelium, and
were of different ring sizes (4–7 pixels in diameter),
their performance variability was expected to identify
benign and malignant epithelium. PPMM followed by
SIVQ was used to analyze the three cases for each
of the three vectors and their ROC curves (in blue)

are shown in Fig. 5. The PPMM-SIVQ curves show
a consistent and reproducible increase in performance
independent of which vector was used compared to
SIVQ alone.

4. Discussion

In this study, we have shown that a cascade
approach as described by Doyle et al. of PPMM fol-
lowed by SIVQ algorithms essentially recapitulates
algorithmically how a pathologist reviews prostate
tissue sections. In essence, PPMM provides the CAD-
equivalence of low power assessment (recapitulating
glandular architecture assessment by pathologist),
with SIVQ providing cytologic assessment (similar
to assessment of the pathologist at “high- power”).
Together, this approach represents a CAD-domain
multi-length-scale solution which appears to be effec-
tive at recapitulating the cognitive processes invoked
by experienced diagnosticians.
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Fig. 4. SIVQ, PPMM, PPMM-SIVQ analysis of sample #3. Using SIVQ, a ring vector was selected to identify the prostatic epithelium. The
resultant thresholded heatmap is shown in Panel A. Nearly all the epithelium was identified. The same specimen was then analyzed with PPMM.
The resultant thresholded heatmap (binary mask) is shown in Panel B. PPMM identified 3 of 4 tumor foci. The algorithm cascade of PPMM
followed by SIVQ was then used to analyze the specimens. The malignant epithelium within the majority of 3 of the 4 tumor foci was identified
and annotated in Panel C. To quantitatively assess and compare the performance of SIVQ to PPMM-SIVQ, an ROC curve was generated and
shown in Panel D (SIVQ is red, PPMM-SIVQ is blue). PPMM-SIVQ far exceeds the performance of SIVQ alone. (Colours are visible in the
online version of the article; http://dx.doi.org/10.3233/ACP-2012-0054)

This synthesis leverages the strengths of each
algorithm, both architectural and cytological, such
that each algorithm independently assesses funda-
mentally different properties of prostate cancer (with
SIVQ identifying the epithelial morphology and
PPMM identifying abnormal lumenal architecture).
This semi-automated approach yields improved
identification of specifically the malignant epithelium,
with the immediate consequence being a plurality
of immediately realizable applications to further
prostate cancer CAD development, specifically by
improving the efficiency of ground truth mapping. In
addition, such an approach has potential application
as a pre-screening/quality assurance tool.

In general, PPMM alone was very successful in iden-
tifying the majority of the tumor foci. Since PPMM
analyzes only the white spaces and operates based on
the size and shape of the white space and its prox-
imity to malignant glands, not surprisingly, PPMM
would identify clusters of small atrophic glands and

artifactual tissue spaces in the stroma, which from the
perspective of PPMM would appear to be indicative
of cancerous glands (abnormal white space within the
lumens). For sample #2, the source of PPMM not iden-
tifying the top of the tumor nodule was due to the 2
large, severely dilated benign glands creating a suffi-
ciently large space as to preclude the Markov detection
filter from recognizing malignant glands beyond those
represented by large benign acini.

The PPMM approach classifies cancerous regions
simply as a function of their adjacency, with this
classification being fully independent of any intrin-
sic property to local texture or luminance – with
these areas being, in essence, “guilty by proximal
association”. This classification behavior is exactly
what would be expected from a Markovian Model,
which builds towards classification certitude based on
a “preponderance of local domain evidence”. Finally, it
should be noted that an additional reason for PPMM’s
resistance to excluding the altered morphology of
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Fig. 5. Quantitative analysis and comparison of using vectors derived from other specimens. To assess the consistency and reproducibility
of using vectors derived from separate specimens, each of the specimens were then analyzed with the three ring vectors from above. The
red curves represent the ROC curves from just the SIVQ analysis. Since these vectors were designed to identify epithelium, and were of
different ring sizes (4–7 pixels in diameter), their performance variability was expected to identify benign and malignant epithelium. PPMM-
SIVQ was used to analyze the three cases for each of the three vectors and their ROC curves (in blue) are shown above (left correspond to
specimen #1, middle specimen #2, and right specimen #3). The PPMM-SIVQ curves show a consistent and reproducible increase in performance
independent of which vector was used compared to SIVQ alone. As mentioned previously, since PPMM-SIVQ applies SVIQ only to a subset
of the tissue (which is determined by PPMM), its performance is bounded by the maximum sensitivity and minimal specificity established
by this subset. This explains why the PPMM-SIVQ ROC curves terminate abruptly. (Colours are visible in the online version of the article;
http://dx.doi.org/10.3233/ACP-2012-0054)

tissue processing artifacts, such as folds, is its depen-
dence on essentially only the pattern of white lumenal
spaces of glands, and not tissue/textural information.

SIVQ is a pattern recognition algorithm whose
strength lies in identifying textural features (in this
case, specifically at the cytologic length scale). How-
ever, prostate cancer is not a cytologic diagnosis
alone, but rather, includes a constellation of both cyto-
logic (nuclear atypia including prominent nucleoli)
and architectural features (absence of a basal layer,
crowded glands with abnormal, infiltrative lumenal
architecture, glandular retraction, intralumenal con-
tents). Therefore, attempts to create a vector capable
of recognizing nucleoli specific to malignant glands
failed, owing to the observation that not all malignant
glands exhibit identical prominent nucleoli. Secondly,
it required the analysis to be performed at 20x magnifi-
cation, with such analysis at this length-scale requiring
significantly greater computational time (on the order
of days on even a high-performance dual or quad core
workstation) for as few as a single digital slide.

When testing vectors derived from one specimen
on other specimens, we show variable performance in
the resultant ROC curves. This was expected because
the ring vectors were generic in order to identify the
epithelium, and that the epithelial morphology dif-
fers across cases and between benign and malignant
features. However, by prescreening with PPMM, this

identified the malignant areas which thus constrained
down the variability of the epithelia morphology, as
demonstrated by the blue curves in Fig. 5.

In this study, we used a cascade approach where the
PPMM was used to truncate the suspicious areas and
SIVQ was analyzed only on this “cut out” digital region
of interest. We found this approach best recapitulated
the process by which pathologist reviews prostatic tis-
sue, with it combining the discriminant strengths of
both the PPMM and SIVQ algorithms. Screening is
initially performed at low power (to assess architec-
tural features) and suspicious areas are subsequently
examined at higher power to assess for cytologic
features. While this study highlights the advantages
of using an integrated algorithmic approach (lume-
nal architecture and cytology), we envision adding
additional algorithms and intervening length scales to
assess other unique architecture and nuclear features
of the prostate cancer described above. Moreover, this
cascaded approach can be easily tuned to similarly
recapitulate the exact diagnostic process carried out
by a surgical pathologist, for each posed diagnostic
challenge.

Additionally the findings confirm that added diag-
nostic power is made possible by algorithm integration.
Along this line of questioning, we explored other com-
binational methods such as use of PPMM and SIVQ
approaches independently, and then combining their
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initial results by a local kernel point-wise convolu-
tion. Given that the SIVQ and PPMM techniques
matched areas within tissue and intra-lumenal open
spaces, respectively, their inherent direct overlap was
minimal, with this reality diminishing the merit of a
point-wise cross-multiplication convolution operator.
Rather, we addressed the orthogonality of algorithm
selectivity by applying a ninth-order Gaussian point
spread function to both images, allowing for the cre-
ation of overlapping regions where the statistical power
of each individual algorithm could be boosted in syn-
ergy. This spatial juxtaposition of the two matching
regions is mathematically viable if we assume that they
are independent events. Thus, the Gaussian operator
serves essentially in the role of a specialized Markov
field discriminant.

4.1. CAD on prostate whole mounts

One can envision using this technology on prostate
whole mounts in a prescreening role to aid the pathol-
ogist in identifying cancerous regions. While it would
be tempting to perform such analysis on saturation
prostate biopsy cases, doing so poses a much greater
challenge because of the relatively few number of
glands, with this diminution degrading the perfor-
mance of the overall Markov modeling process (which
is dependent upon the adjacency of a critical mass
of malignant glands). One potential solution would
be to use the “blurring” integration approach already
described above, which would give more emphasis to
the cytologic and histologic features, rather than adja-
cency of glands. Finally, in settings where there is less
total tissue, it would be practical to run SIVQ at a higher
magnification.

Recent studies have shown prostate tumor volume
to be an independent predictor of recurrence and long-
term survival in multivariate analysis studies [25, 26].
Unfortunately, the inability to arrive at a standard
means for measuring tumor volume [24, 25, 27] has
resulted in articles both extolling and challenging its
prognostic utility [28]. Another potential application
of the PPMM-SIVQ technique would be in measur-
ing tumor volume. Such an approach would be more
precise than the current methodology, which extrap-
olates upon a linear maximal tumor dimension. We
have previously shown accurate and precise surface
area measurement with SIVQ [14]. One can extrapo-
late this approach to measure the surface area of paint

from the PPMM-SIVQ analysis. These 2-dimensional
painted whole mount sections could conceivably
be reconstructed into 3 dimensional images. How-
ever, registration can be a difficult task, complicated
by factors such as rotated or shifted slides, tissue
deformation, tissue folding, tissue loss during the
sectioning, and variable spacing between sections.
Please see Xiao et al. [29] for a list of the major
hurdles.

4.2. The importance of a composite approach

There is value in recognizing the intrinsic limitations
of such tools when used alone and similarly, how their
use in composite constructs allows for computer-aided
enhancement of both detection and classification of
important regions of interest.

When comparing the classification performances of
these two disparate approaches, SIVQ emerges as the
algorithm with the smaller feature detection length
scale (equivalent to a high power view), while PPMM
operates at a larger length scale (low power view).
Each approach alone has the potential for false-positive
and false-negative gating, based upon the limitations
of cancer detection at each length scale. However,
when implemented as a composite detection construct,
the two approaches complements each other, with the
notable result being that use of appropriately-nested
Boolean “OR” and “AND” operations of the two result
classes can generate a derived result that exhibits sig-
nificantly better accuracy than use of either algorithm
alone.

When considering that the PPMM approach is pos-
sibly the current gold standard for classification of
cancerous areas in whole-slide imagery, the above
composite construct shows improved performance in
identification of malignant prostatic epithelium, and
may serve as a validated ground truth generator for
malignant prostate epithelium.

4.3. Potential integration into the clinical
workflow

Another significant factor in the clinical utility of
CAD algorithms is the ease with which they can
be incorporated into pathology information systems
and the associated laboratory workflow. Most every
contemporary anatomic pathology laboratory infor-
mation system (AP-LIS) supports “Part Types” or
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Specimen Types” with these allowing laboratories to
apply the principle of “standard work” to similar types
of specimens. As an example, laboratories routinely
define a Prostate Biopsy Part Type and use this def-
inition to constrain the standard workup for prostate
biopsies. This workup might include: the submission
protocol for each biopsy into one or more cassettes,
the specific gross dictation protocol, and finally, the
specific tissue processing, cutting and staining pro-
tocols (i.e., five slides, stepped, with the first, third
and fifth slide stained with H&E and the remainder
stored unstained). Increasingly, modern AP-LIS solu-
tions allow labs to extend these basic, part-type-driven
protocols to include imaging and image analysis meta-
data. In the current example, the “Prostate Biopsy”
Part Type workup would include an imaging protocol
and one or more image analyses diagnostic segments
(on the three stained slides) with the results available
through the LIS schema. Slides would then be sent
to the pathologist with a note in the pathologist work
queue (or printed on the case paper work) indicating
that images and associated image analysis data are
also available). As WSI devices become increasingly
reliable and faster (leading to the ability to render a
WSI dataset from a single prostate biopsy slide in less
than three minutes) this approach will become prac-
ticable. The duration of running the image analysis
algorithms alone is as follows: PPMM rendering in
less than 2 minutes per image and the SIVQ anal-
ysis on the PPMM identified regions took about 15
minutes.

4.4. Ground truth for prostatic adenocarcinoma

The determination of how one defines ground truth
is an important concept in developing and comparing
CAD algorithms. For example, if one circles the tumor
nodule and defines everything within that nodule as
ground truth “cancer”, in actuality the CAD algorithm
will be assessed for its ability tumor regions in gen-
eral, but not the specific tumor cells. For an algorithm
such as PPMM, which analyzes lumenal architecture
and then scores the general area around these lumens
as cancer, circling the tumor would be appropriate.
However, if one is evaluating or using a CAD algo-
rithm that assesses specific tumor cytology, circling
the tumor area would penalize the algorithm owing to
the fact that the circled area would include, in addition
to malignant cells of interest: lumenal white spaces,

stroma, inflammatory cells, nerves, vascular structures
and other adjacent connective tissue (for prostate can-
cer). These latter categories should all be defined as
benign, yet their presence in the ground truth map
constitutes a penalty on overall ground truth perfor-
mance. Therefore, one’s ground truth must correspond
to the intended specific surface area of interest, as
applied to the behavior of the algorithm under con-
sideration.

In addition, when determining ground truth in deter-
mining the size of a tumor nodule, one measures
the maximal linear dimension. However, prostate can-
cer is an infiltrative process in which the cancerous
glands extend into the surrounding benign glands.
Tumor nodules often contain a spectrum of rare to
few benign glands. However, if one is making a
ground truth map of only the malignant epithelium
of prostate cancer, it brings into focus the reality
of the tedious and time consuming process required
to manually paint all the malignant glands in the
tumor nodule. This effort is often compounded by
the presence of suspicious looking glands, or atypical
glands, which might need confirmatory IHC stain-
ing. Therefore, the one making the ground truth map
may be compelled to include only those definitively
malignant glands based on H&E cytology (thus for-
going sensitivity) or to include, incrementally, all the
suspicious/atypical glands (thus forgoing specificity).
Clearly, neither strategy is optimal. Lastly, creating
ground truth maps require down-sampling of the WSI
data set because current file sizes often exceed the
capabilities of most digital image editing tools. We
tried “painting” the tumor epithelium of directly onto
the digital slide using Aperio’s ImageScope tool, but
found it was very challenging because its annotation
tool produces boundaries, rather than having a “paint
brush-like” function as is found in image editing tools
that is easily enable the making of pixel-wise truth
maps. We found GIMP to be of the greatest utility
for editing WSI data sets that were down-sampled
1 : 4 enabling the pathologist to simply “color in” the
areas. We envision that PPMM-SIVQ is well posi-
tioned to emerge as an effective ground truth generator
for malignant prostate epithelium. While no method
is perfect, PPMM-SIVQ’s current capabilities clearly
place the pathologist in the tenable role of merely
requiring confirmatory review, with the need for only
modest additions/deletions to the initially rendered
map, thus saving a significant amount of the pathol-
ogist’s time.
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Supplemental Figure 1. Histopathologic features that were or were not identified by PPMM or PPMM-SIVQ. Figure A shows a focus of lobulated
small benign atrophic glands from specimen #1 that was identified as falsely positive by PPMM and PPMM-SIVQ. Figure B shows a focus
of medium and large acini that looked very similar to the tumor nodule of specimen #2 that was identified as positive by PPMM and PPMM-
SIVQ. Upon further review, it is favored that these glands are malignant and would need immunohistochemistry stains to confirm. Figure C
shows prostatic intraepithelial neoplasia (PIN) from specimen #2 that was falsely positively identified by PPMM and PPMM-SIVQ. Figure D
shows two foci of artificial white tissue spaces in specimen #3 that was falsely identified as positive by PPMM but not PPMM-SIVQ. Figure E
shows a minute focus of small and large highly suspicious glands (which was not mapped in the ground truth) and was not identified by PPMM
or PPMM-SIVQ. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/ACP-2012-0054)
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