1,831 research outputs found

    Stability and sensitivity of Learning Analytics based prediction models

    Get PDF
    Learning analytics seek to enhance the learning processes through systematic measurements of learning related data and to provide informative feedback to learners and educators. Track data from Learning Management Systems (LMS) constitute a main data source for learning analytics. This empirical contribution provides an application of Buckingham Shum and Deakin Crick’s theoretical framework of dispositional learning analytics: an infrastructure that combines learning dispositions data with data extracted from computer-assisted, formative assessments and LMSs. In two cohorts of a large introductory quantitative methods module, 2049 students were enrolled in a module based on principles of blended learning, combining face-to-face Problem-Based Learning sessions with e-tutorials. We investigated the predictive power of learning dispositions, outcomes of continuous formative assessments and other system generated data in modelling student performance and their potential to generate informative feedback. Using a dynamic, longitudinal perspective, computer-assisted formative assessments seem to be the best predictor for detecting underperforming students and academic performance, while basic LMS data did not substantially predict learning. If timely feedback is crucial, both use-intensity related track data from e-tutorial systems, and learning dispositions, are valuable sources for feedback generation

    Student profiling in a dispositional learning analytics application using formative assessment

    No full text
    How learning disposition data can help us translating learning feedback from a learning analytics application into actionable learning interventions, is the main focus of this empirical study. It extends previous work where the focus was on deriving timely prediction models in a data rich context, encompassing trace data from learning management systems, formative assessment data, e-tutorial trace data as well as learning dispositions. In this same educational context, the current study investigates how the application of cluster analysis based on e-tutorial trace data allows student profiling into different at-risk groups, and how these at-risk groups can be characterized with the help of learning disposition data. It is our conjecture that establishing a chain of antecedent-consequence relationships starting from learning disposition, through student activity in e-tutorials and formative assessment performance, to course performance, adds a crucial dimension to current learning analytics studies: that of profiling students with descriptors that easily lend themselves to the design of educational interventions
    • …
    corecore