115 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    An Intelligent Hybrid Protocol for Effective Load Balancing and Energy Efficient Routing for MANETs

    Get PDF
    MANET (Mobile ad hoc network) is an autonomous decentralised network. And it is a collection of wireless mobile nodes that dynamically form a temporary network without the reliance of any infrastructure or central administration. Routing is a challenging task in manet. When the size and complexity increases the important challenge in manet is to avoid congestion with effective load balancing and improve energy, QoS parameters inside the network. In this work we propose a new hybrid protocol by combining ACO and Predator prey (LV) model which known as ACRRCC (Ant colony based rate regulating congestion control) method, which works efficiently in two phases. The efficient and optimal routing strategy is done by phase I using ant colony optimization. In phase II the congestion is majorly controlled by employing a mathematical model named predator-prey model which regulates the rate of the traffic flow in the network path. Performance of our proposed hybrid model ACRRCC yields good results under simulation study when compared with simple ACO

    A Bioinspired Adaptive Congestion-Avoidance Routing for Mobile Ad Hoc Networks

    Get PDF
    Traditional mobile Ad Hoc network routing protocols are mainly based on the Shortest Path, which possibly results in many congestion nodes that incur routing instability and rerouting. To mitigate the side-efforts, this paper proposed a new bioinspired adaptive routing protocol (ATAR) based on a mathematics biology model ARAS. This paper improved the ARAS by reducing the randomness and by introducing a new routing-decision metric "the next-hop fitness" which was denoted as the congestion level of node and the length of routing path. In the route maintenance, the nodes decide to forward the data to next node according to a threshold value of the fitness. In the recovery phase, the node will adopt random manner to select the neighbor as the next hop by calculation of the improved ARAS. With this route mechanism, the ATAR could adaptively circumvent the congestion nodes and the rerouting action is taken in advance. Theoretical analysis and numerical simulation results show that the ATAR protocol outperforms AODV and MARAS in terms of delivery ratio, ETE delay, and the complexity. In particular, ATAR can efficiently mitigate the congestion

    Intelligent Routing and Flow Control In MANETs

    Get PDF
    Improving the performance of the Mobile Ad hoc NETworks (MANETs) is a challenge. MANETs present several constraints such as dynamic topology, wireless link communication and limited resources like bandwidth and energy. Routing without taking into account these constraints degrades performance and aggravates congestion problem. This paper proposes a new solution combining QoS (Quality of Service) routing protocol and flow control mechanism. This QoS routing protocol selects the routes with more resources in an intelligent manner rather than diffusion. It returns the best route offering a higher transmission rate, a less delay and a more stability. This protocol uses a new metric to compute the most stable route. To reinforce the congestion avoidance, we add a flow control mechanism to adjust the sender\u27s transmission rate for each route. The solution is modeled by the ant systems. The results obtained under the Network Simulator (NS2.31) show that our QoS routing protocol improves the network performance compared to QoS-AODV protocol. The addition of flow control mechanism produces significant improvements in network system performance
    corecore