4,162 research outputs found

    A bioinspired computing approach to model complex systems

    Get PDF
    The use of models is intrinsic to any scientific activity. In particular, formal/mathematical models provide a relevant tool for scientific investigation. This paper presents a new Membrane Computing based computational paradigm as a framework for modelling processes and real-life phenomena. P systems, devices in Membrane Computing, are not used as a computing paradigm, but rather as a formalism for describing the behaviour of the system to be modelled. They offer an approach to the development of models for biological systems that meets the requirements of a good modelling framework: relevance, understandability, extensibility and computability.Ministerio de Economía y Competitividad TIN2012-3743

    Standardization Framework for Sustainability from Circular Economy 4.0

    Get PDF
    The circular economy (CE) is widely known as a way to implement and achieve sustainability, mainly due to its contribution towards the separation of biological and technical nutrients under cyclic industrial metabolism. The incorporation of the principles of the CE in the links of the value chain of the various sectors of the economy strives to ensure circularity, safety, and efficiency. The framework proposed is aligned with the goals of the 2030 Agenda for Sustainable Development regarding the orientation towards the mitigation and regeneration of the metabolic rift by considering a double perspective. Firstly, it strives to conceptualize the CE as a paradigm of sustainability. Its principles are established, and its techniques and tools are organized into two frameworks oriented towards causes (cradle to cradle) and effects (life cycle assessment), and these are structured under the three pillars of sustainability, for their projection within the proposed framework. Secondly, a framework is established to facilitate the implementation of the CE with the use of standards, which constitute the requirements, tools, and indicators to control each life cycle phase, and of key enabling technologies (KETs) that add circular value 4.0 to the socio-ecological transition

    Embedding Multi-Task Address-Event- Representation Computation

    Get PDF
    Address-Event-Representation, AER, is a communication protocol that is intended to transfer neuronal spikes between bioinspired chips. There are several AER tools to help to develop and test AER based systems, which may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. Although these tools reach very high bandwidth at the AER communication level, they require the use of a personal computer to allow the higher level processing of the event information. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of an embedded multi-task AER tool, connecting and programming it for processing Address-Event information from a spiking generator.Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    Bioinspired Computing: Swarm Intelligence

    Get PDF

    A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles

    Get PDF
    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently

    A modified neural network model for Lobula Giant Movement Detector with additional depth movement feature

    Get PDF
    The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron that is located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of the approaching object and its proximity. It has been found that it can respond to looming stimuli very quickly and can trigger avoidance reactions whenever a rapidly approaching object is detected. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper proposes a modified LGMD model that provides additional movement depth direction information. The proposed model retains the simplicity of the previous neural network model, adding only a few new cells. It has been tested on both simulated and recorded video data sets. The experimental results shows that the modified model can very efficiently provide stable information on the depth direction of movement

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms
    corecore