7,409 research outputs found

    Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

    Full text link
    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.Comment: 14 pages, 40 figure

    Scale Invariant Interest Points with Shearlets

    Full text link
    Shearlets are a relatively new directional multi-scale framework for signal analysis, which have been shown effective to enhance signal discontinuities such as edges and corners at multiple scales. In this work we address the problem of detecting and describing blob-like features in the shearlets framework. We derive a measure which is very effective for blob detection and closely related to the Laplacian of Gaussian. We demonstrate the measure satisfies the perfect scale invariance property in the continuous case. In the discrete setting, we derive algorithms for blob detection and keypoint description. Finally, we provide qualitative justifications of our findings as well as a quantitative evaluation on benchmark data. We also report an experimental evidence that our method is very suitable to deal with compressed and noisy images, thanks to the sparsity property of shearlets

    Magnetic field correlations in a random flow with strong steady shear

    Full text link
    We analyze magnetic kinematic dynamo in a conducting fluid where the stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, we establish their growth rates and scaling behavior. General assertions are illustrated by explicit solution of the model where the velocity field is short-correlated in time

    A Sample of Intermediate-Mass Star-Forming Regions: Making Stars at Mass Column Densities <1 g/cm^2

    Full text link
    In an effort to understand the factors that govern the transition from low- to high-mass star formation, we identify for the first time a sample of intermediate-mass star-forming regions (IM SFRs) where stars up to - but not exceeding - 8 solar masses are being produced. We use IRAS colors and Spitzer Space Telescope mid-IR images, in conjunction with millimeter continuum and CO maps, to compile a sample of 50 IM SFRs in the inner Galaxy. These are likely to be precursors to Herbig AeBe stars and their associated clusters of low-mass stars. IM SFRs constitute embedded clusters at an early evolutionary stage akin to compact HII regions, but they lack the massive ionizing central star(s). The photodissociation regions that demarcate IM SFRs have typical diameters of ~1 pc and luminosities of ~10^4 solar luminosities, making them an order of magnitude less luminous than (ultra)compact HII regions. IM SFRs coincide with molecular clumps of mass ~10^3 solar masses which, in turn, lie within larger molecular clouds spanning the lower end of the giant molecular cloud mass range, 10^4-10^5 solar masses. The IR luminosity and associated molecular mass of IM SFRs are correlated, consistent with the known luminosity-mass relationship of compact HII regions. Peak mass column densities within IM SFRs are ~0.1-0.5 g/cm^2, a factor of several lower than ultra-compact HII regions, supporting the proposition that there is a threshold for massive star formation at ~1 g/cm^2.Comment: 61 pages, 6 tables, 20 figures. Accepted for publication in the Astronomical Journa

    A robust constraint on cosmic textures from the cosmic microwave background

    Full text link
    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early universe, and which leave characteristic hot and cold spots in the CMB. We apply Bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.Comment: 5 pages, 2 figures. v2: replaced with version accepted by PRL (minor amendments to reduce length and address referee comments
    • …
    corecore