13 research outputs found

    Deep Active Learning for Automatic Mitotic Cell Detection on HEp-2 Specimen Medical Images

    Get PDF
    Identifying Human Epithelial Type 2 (HEp-2) mitotic cells is a crucial procedure in anti-nuclear antibodies (ANAs) testing, which is the standard protocol for detecting connective tissue diseases (CTD). Due to the low throughput and labor-subjectivity of the ANAs' manual screening test, there is a need to develop a reliable HEp-2 computer-aided diagnosis (CAD) system. The automatic detection of mitotic cells from the microscopic HEp-2 specimen images is an essential step to support the diagnosis process and enhance the throughput of this test. This work proposes a deep active learning (DAL) approach to overcoming the cell labeling challenge. Moreover, deep learning detectors are tailored to automatically identify the mitotic cells directly in the entire microscopic HEp-2 specimen images, avoiding the segmentation step. The proposed framework is validated using the I3A Task-2 dataset over 5-fold cross-validation trials. Using the YOLO predictor, promising mitotic cell prediction results are achieved with an average of 90.011% recall, 88.307% precision, and 81.531% mAP. Whereas, average scores of 86.986% recall, 85.282% precision, and 78.506% mAP are obtained using the Faster R-CNN predictor. Employing the DAL method over four labeling rounds effectively enhances the accuracy of the data annotation, and hence, improves the prediction performance. The proposed framework could be practically applicable to support medical personnel in making rapid and accurate decisions about the mitotic cells' existence

    Pattern Classification of Human Epithelial Images

    Get PDF
    This project shows an important role to diagnosis autoimmune disorder which is by a comparative analysis on the most appropriate clustering technique for the segmentation and also to develop algorithm for positivity classification. In this project, there are four stages will be used to analyze pattern classification in human epithelial (HEp-2) images. First of all, image enhancement will take part in order to boost efficiency of algorithm by implementing some of the adjustment and filtering technique to increase the visibility of image. After that, the second stage will be the image segmentation by using most appropriate clustering technique. There will be a comparative analysis on clustering techniques for segmentation which are adaptive fuzzy c-mean and adaptive fuzzy moving k-mean. Then, for features extraction, by calculating the mean of each of the properties such as area, perimeter, major axis length, and minor axis length for each images. After that, will implementing a grouping based on properties dataset that has been calculated. Last but not least, from the mean of properties, it will classify into the pattern after ranging the value of mean properties of each of the pattern itself that has been done in classification stage

    Deep CNN for IIF Images Classification in Autoimmune Diagnostics

    Get PDF
    The diagnosis and monitoring of autoimmune diseases are very important problem in medicine. The most used test for this purpose is the antinuclear antibody (ANA) test. An indirect immunofluorescence (IIF) test performed by Human Epithelial type 2 (HEp-2) cells as substrate antigen is the most common methods to determine ANA. In this paper we present an automatic HEp-2 specimen system based on a convolutional neural network method able to classify IIF images. The system consists of a module for features extraction based on a pre-trained AlexNet network and a classification phase for the cell-pattern association using six support vector machines and a k-nearest neighbors classifier. The classification at the image-level was obtained by analyzing the pattern prevalence at cell-level. The layers of the pre-trained network and various system parameters were evaluated in order to optimize the process. This system has been developed and tested on the HEp-2 images indirect immunofluorescence images analysis (I3A) public database. To test the generalisation performance of the method, the leave-one-specimen-out procedure was used in this work. The performance analysis showed an accuracy of 96.4% and a mean class accuracy equal to 93.8%. The results have been evaluated comparing them with some of the most representative works using the same database

    APPLICATION OF DEEP CONVOLUTIONAL NETWORK FOR THE CLASSIFICATION OF AUTO IMMUNE DISEASE

    Get PDF
    Abstract—Indirect Immuno Fluorescence (IIF) detection analysis technique is in limelight because of its great importance in the field of medical health. It is mainly used for the analysis of auto-immune diseases. These diseases are caused when body’s natural defense system can’t distinguish between normal body cells and foreign cells. More than 80 auto-immune diseases exist in humans which affect different parts of body. IIF works both manually as well as by using Computer-Aided Diagnosis (CAD). The aim of research is to propose an advanced methodology for the analysis of auto-immune diseases by using well-known model of transfer learning for the analysis of autoimmune diseases. Data augmentation and data normalization is also used to resolve the problem of over fitting in data. Firstly, freely available MIVIA data set of HEP- type 2 cells has been selected, which contains total of 1457 images and six different classes of staining patterns named as centromere, homogeneous, nucleolar, coarse speckled, fine speckled and cytoplasmatic. Then well-known model of transfer learning VGG-16 are train on MIVIA data set of HEP-type 2 cells. Data augmentation and data normalization used on pre-trained data to avoid over fitting because datasets of medical images are not very large. After the application of data augmentation and data normalization on pre-trained model, the performance of model is used to calculate by using a confusion matrix of VGG-16. VGG-16 achieves 84.375% accuracy. It is more suitable for the analysis of auto-immune diseases. Same as accuracy, we also use the other three parameters, Precision, F1 measures, and recall to check the performance of model. All four parameters use confusion matrix to find performance of model. The tools and languages also have great importance because it gives a simple and easy way of implementation to solve problems in image processing. For this purpose, python and colab is used to read and write the data because python provides fast execution of data and colab work as a simulator of python. The result shows that transfer learning is the most sufficient and enhanced technique for the analysis of auto-immune diseases since it provides high accuracy in less time and reduces the errors in image classification

    MITOTIC HEp-2 CELL RECOGNITION USING LOCAL BINARY PATTERN (LBP) AND k-NEAREST NEIGHBOUR (k-NN) CLASSIFIER

    Get PDF
    Immune system produces autoantibody either randomly or as a result of an unknown material in the body itself. A failure of the body’s own defences against diseases has result to the auto immune diseases. Auto immune diseases will start attacking its own cell as they unable to differentiate between the foreign material and its own cell. An antinuclear antibody (ANA) is required as an indicator of the autoimmune process. IIF is the recommended technique for ANA detection in patient serum. IIF slides are observed by specialists reporting for the fluorescence intensity, staining pattern and looking for the mitotic cells. Indeed, the presence of the mitotic cells significantly important due to several key factors, first to guarantee the correctness of the slide preparation process and reported the staining pattern. Therefore the ability to detect mitotic cells is acquired to develop Computer-Aided Diagnosis (CAD) system in IIF to support the specialists form image acquisition up to image classification. This work aims to highlight the features of mitotic cells and to develop recognition algorithm for mitotic cell by incorporated Local Binary Pattern (LBP) and k-Nearest Neighbour to classified unlabelled image. A completed modelling of the LBP operator is proposed which is represented by its centre pixel and a local sign-magnitude transform (LDSMT). k-NN classifies unlabelled images based on the utmost majority samples in the feature space. This work involves five stages; image acquisition, pre-processing, feature extraction, distance measurement and classification

    Pattern Classification of Human Epithelial Images

    Get PDF
    This project shows an important role to diagnosis autoimmune disorder which is by a comparative analysis on the most appropriate clustering technique for the segmentation and also to develop algorithm for positivity classification. In this project, there are four stages will be used to analyze pattern classification in human epithelial (HEp-2) images. First of all, image enhancement will take part in order to boost efficiency of algorithm by implementing some of the adjustment and filtering technique to increase the visibility of image. After that, the second stage will be the image segmentation by using most appropriate clustering technique. There will be a comparative analysis on clustering techniques for segmentation which are adaptive fuzzy c-mean and adaptive fuzzy moving k-mean. Then, for features extraction, by calculating the mean of each of the properties such as area, perimeter, major axis length, and minor axis length for each images. After that, will implementing a grouping based on properties dataset that has been calculated. Last but not least, from the mean of properties, it will classify into the pattern after ranging the value of mean properties of each of the pattern itself that has been done in classification stage

    A benchmarking platform for mitotic cell classification of ANA IIF HEp-2 images

    No full text
    Anti-nuclear antibody (ANA) indirect immunofluoresence (IIF) human epithelial type-2 (HEp-2) testing provides important clinical information for the diagnosis of systemic autoimmune rheumatic diseases (SARD). Recent developments in computer aided diagnosis (CAD) systems aim to improve the reliability and reproducibility of ANA IIF laboratory testing by providing ANA classification. The limited prior work into ANA IIF HEp-2 mitotic classification derives its protocol from clinically abstract performance metrics dependent on a single data set of FITC channel images. In this paper, we propose an extensive benchmarking platform considering both the DAPI and FITC channel images for mitotic classification. Furthermore, we argue that pedestrian detection metrics better define the mitotic classification problem. To support these propositions, we design a simple classifier on the DAPI channel and use meaningful performance metrics to demonstrate that it significantly outperforms the most recent state-of-the-art approach

    Evaluation of PD-L1 expression in various formalin-fixed paraffin embedded tumour tissue samples using SP263, SP142 and QR1 antibody clones

    Get PDF
    Background & objectives: Cancer cells can avoid immune destruction through the inhibitory ligand PD-L1. PD-1 is a surface cell receptor, part of the immunoglobulin family. Its ligand PD-L1 is expressed by tumour cells and stromal tumour infltrating lymphocytes (TIL). Methods: Forty-four cancer cases were included in this study (24 triple-negative breast cancers (TNBC), 10 non-small cell lung cancer (NSCLC) and 10 malignant melanoma cases). Three clones of monoclonal primary antibodies were compared: QR1 (Quartett), SP 142 and SP263 (Ventana). For visualization, ultraView Universal DAB Detection Kit from Ventana was used on an automated platform for immunohistochemical staining Ventana BenchMark GX. Results: Comparing the sensitivity of two different clones on same tissue samples from TNBC, we found that the QR1 clone gave higher percentage of positive cells than clone SP142, but there was no statistically significant difference. Comparing the sensitivity of two different clones on same tissue samples from malignant melanoma, the SP263 clone gave higher percentage of positive cells than the QR1 clone, but again the difference was not statistically significant. Comparing the sensitivity of two different clones on same tissue samples from NSCLC, we found higher percentage of positive cells using the QR1 clone in comparison with the SP142 clone, but once again, the difference was not statistically significant. Conclusion: The three different antibody clones from two manufacturers Ventana and Quartett, gave comparable results with no statistically significant difference in staining intensity/ percentage of positive tumour and/or immune cells. Therefore, different PD-L1 clones from different manufacturers can potentially be used to evaluate the PD- L1 status in different tumour tissues. Due to the serious implications of the PD-L1 analysis in further treatment decisions for cancer patients, every antibody clone, staining protocol and evaluation process should be carefully and meticulously validated
    corecore