26,799 research outputs found

    A hierarchical Bayesian approach to record linkage and population size problems

    Full text link
    We propose and illustrate a hierarchical Bayesian approach for matching statistical records observed on different occasions. We show how this model can be profitably adopted both in record linkage problems and in capture--recapture setups, where the size of a finite population is the real object of interest. There are at least two important differences between the proposed model-based approach and the current practice in record linkage. First, the statistical model is built up on the actually observed categorical variables and no reduction (to 0--1 comparisons) of the available information takes place. Second, the hierarchical structure of the model allows a two-way propagation of the uncertainty between the parameter estimation step and the matching procedure so that no plug-in estimates are used and the correct uncertainty is accounted for both in estimating the population size and in performing the record linkage. We illustrate and motivate our proposal through a real data example and simulations.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS447 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Bayesian Approach to Graphical Record Linkage and De-duplication

    Full text link
    We propose an unsupervised approach for linking records across arbitrarily many files, while simultaneously detecting duplicate records within files. Our key innovation involves the representation of the pattern of links between records as a bipartite graph, in which records are directly linked to latent true individuals, and only indirectly linked to other records. This flexible representation of the linkage structure naturally allows us to estimate the attributes of the unique observable people in the population, calculate transitive linkage probabilities across records (and represent this visually), and propagate the uncertainty of record linkage into later analyses. Our method makes it particularly easy to integrate record linkage with post-processing procedures such as logistic regression, capture-recapture, etc. Our linkage structure lends itself to an efficient, linear-time, hybrid Markov chain Monte Carlo algorithm, which overcomes many obstacles encountered by previously record linkage approaches, despite the high-dimensional parameter space. We illustrate our method using longitudinal data from the National Long Term Care Survey and with data from the Italian Survey on Household and Wealth, where we assess the accuracy of our method and show it to be better in terms of error rates and empirical scalability than other approaches in the literature.Comment: 39 pages, 8 figures, 8 tables. Longer version of arXiv:1403.0211, In press, Journal of the American Statistical Association: Theory and Methods (2015

    Structural matching by discrete relaxation

    Get PDF
    This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching. Broadly speaking there are two main aspects to this study. Firstly we locus on the issue of how relational inexactness may be quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is controlled. We investigate three different realizations ai the matching process which draw on contrasting control models. The main conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively control a large population of contaminating clutter

    Automated system for analyzing the activity of individual neurons

    Get PDF
    This paper presents a signal processing system that: (1) provides an efficient and reliable instrument for investigating the activity of neuronal assemblies in the brain; and (2) demonstrates the feasibility of generating the command signals of prostheses using the activity of relevant neurons in disabled subjects. The system operates online, in a fully automated manner and can recognize the transient waveforms of several neurons in extracellular neurophysiological recordings. Optimal algorithms for detection, classification, and resolution of overlapping waveforms are developed and evaluated. Full automation is made possible by an algorithm that can set appropriate decision thresholds and an algorithm that can generate templates on-line. The system is implemented with a fast IBM PC compatible processor board that allows on-line operation
    • …
    corecore