10,217 research outputs found

    A novel disparity-assisted block matching-based approach for super-resolution of light field images

    Get PDF
    Currently, available plenoptic imaging technology has limited resolution. That makes it challenging to use this technology in applications, where sharpness is essential, such as film industry. Previous attempts aimed at enhancing the spatial resolution of plenoptic light field (LF) images were based on block and patch matching inherited from classical image super-resolution, where multiple views were considered as separate frames. By contrast to these approaches, a novel super-resolution technique is proposed in this paper with a focus on exploiting estimated disparity information to reduce the matching area in the super-resolution process. We estimate the disparity information from the interpolated LR view point images (VPs). We denote our method as light field block matching super-resolution. We additionally combine our novel super-resolution method with directionally adaptive image interpolation from [1] to preserve sharpness of the high-resolution images. We prove a steady gain in the PSNR and SSIM quality of the super-resolved images for the resolution enhancement factor 8x8 as compared to the recent approaches and also to our previous work [2]

    Spatiotemporal super-resolution for low bitrate H.264 video

    Get PDF

    Confidence-aware Levenberg-Marquardt optimization for joint motion estimation and super-resolution

    Full text link
    Motion estimation across low-resolution frames and the reconstruction of high-resolution images are two coupled subproblems of multi-frame super-resolution. This paper introduces a new joint optimization approach for motion estimation and image reconstruction to address this interdependence. Our method is formulated via non-linear least squares optimization and combines two principles of robust super-resolution. First, to enhance the robustness of the joint estimation, we propose a confidence-aware energy minimization framework augmented with sparse regularization. Second, we develop a tailor-made Levenberg-Marquardt iteration scheme to jointly estimate motion parameters and the high-resolution image along with the corresponding model confidence parameters. Our experiments on simulated and real images confirm that the proposed approach outperforms decoupled motion estimation and image reconstruction as well as related state-of-the-art joint estimation algorithms.Comment: accepted for ICIP 201
    • …
    corecore