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ABSTRACT

Currently, available plenoptic imaging technology has limited res-
olution. That makes it challenging to use this technology in appli-
cations, where sharpness is essential, such as film industry. Previ-
ous attempts aimed at enhancing the spatial resolution of plenop-
tic light field (LF) images were based on block and patch match-
ing inherited from classical image super-resolution, where multi-
ple views were considered as separate frames. By contrast to these
approaches, a novel super-resolution technique is proposed in this
paper with a focus on exploiting estimated disparity information
to reduce the matching area in the super-resolution process. We
estimate the disparity information from the interpolated LR view
point images (VPs). We denote our method as light field block
matching super-resolution. We additionally combine our novel
super-resolution method with directionally adaptive image inter-
polation from [1] to preserve sharpness of the high-resolution im-
ages. We prove a steady gain in the PSNR and SSIM quality of
the super-resolved images for the resolution enhancement factor
8x8 as compared to the recent approaches and also to our previous
work [2].

Index Terms — Resolution Enhancement, Light Field Image
Super-Resolution, Block Matching, 4D Imaging

1. INTRODUCTION

Advances in technology of the plenoptic camera have brought
important attention in both research community and industry to
provide efficient scene refocusing at different depths without ad-
ditional computational complexity [3, 4, 5, 6, 7]. This type of cam-
era is based on the concept initially introduced by Adelson et al.
[6] and further developed by Levoy et al. [3] by parameterizing
the 4D LF. One of the common ways to represent a LF data is to
consider it as a matrix of VPs, where each VP captures a 2D slice
of the LF. In contrast to classical cameras, plenoptic cameras are
capable of capturing images (2D LF slices) at multiple VPs at the
same time owing to a system of multi-array lenses, a significant
leap forward in the camera hardware technology. Conversely,
presently available plenoptic camera technology is capable of
providing only a limited depth-of-field and low spatial image res-
olution [8]. For example, the Lytro camera’s final super resolution
is restricted to only 300 x 300 pixels [9].

Several approaches have been proposed to enhance this lim-
ited spatial resolution. For instance, the authors in [7] and [8] used
the EPIs to measure variational methods and disparity maps in or-
der to calculate a LF image. Furthermore, in [10] and [11] the VP
information is exploited for LF denoising application by extend-
ing the block matching 3D (BM3D) filter. In contrast to recent
studies, and to the best of our knowledge we are the first to exploit
BM to light-field super-resolution (LFSR) rather than motion es-
timation in classical video processing.
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This study proposes a novel LFSR technique that is capable
of enhancing spatial resolution of super-resolved LF images,
while preserving low computational complexity. Our approach
consists of two steps: first, we apply the image interpolation tech-
nique from [1] to each VP to enhance spatial resolution by the
factor 4x4. This method is based on directionally adaptive wave-
lets and is able to preserve efficiently sharpness in the interpolated
high-resolution images. Second, we estimate disparity infor-
mation from these high-resolution images using the algorithm
from [9]. We use then this information to facilitate block matching
super-resolution by narrowing down the block search area in
neighbouring VPs. Thus, the disparity pattern largely relies on the
VPs of the scene from the plane of the LF. Furthermore, a LF
block of dimension n, X n, X k X k that corresponds to a 4D
block was considered as opposed to the BM3D, which searches
and combines blocks only within a single image, whereas our light
field block matching super-resolution (LFBMSR) approach oper-
ates across multiple views, exploiting similar blocks from differ-
ent depths. Further, to obtain the final super resolved image 8x8
times, we use our recent LF hybrid super-resolution (LFHYSR)
approach in [2]. Finally, we demonstrate the robustness of the pro-
posed novel technique for solving LF processing tasks, namely
the LFSR. As compared to the current LFSR images, the proposed
novel approach efficiently produces far better quality images as
opposed to the images obtained with the use of the MISR [12],
and HYSISR [13].

The sections of the remaining paper are as follows. Section 2
contains the previous work of super-resolution for LF images.
Section 3, shows our technical work, which explained the novel
method we propose for BM to LF images and an overview of our
recent method to enhance the resolution. Section 4 shows the ex-
perimental results and evaluation. Section 5 concludes the paper.

2. REVIEW OF RELATED WORK

Super-resolution of LF images could be divided into two ma-
jor classes: variational optimization framework and projection-
based algorithms. As an example of the variational optimization
framework, in [14] the authors improved image features by out-
lining the variational Bayesian scheme and expanding the cap-
tured LF image’s resolution. Thus, they evaluate both the LF and
high-resolution (HR) of the depth map, although they manipulate
prior knowledge about the scene, which helps to get extra data
from accessible information. Their approach enhances image
quality by recognizing the point spread function (PSF) of the
plenoptic camera under Gaussian optics suppositions over numer-
ous insight scenes, which suffers from limited spatial. The authors
of [5] proposed a method by utilizing the EPI to figure variational
techniques and continuous disparity maps to compute HR image.
The authors of [8] performed Bayesian derivation to accomplish
LFSR by applying Gaussian mixture model (GMM) over LF
patches for LF image which uses a projection-based technique. In



\AZ

Interpolation
x4

|

LFBMSR

BMSR

(HYSISR)

Inysrlm, ]

BMSR
(MISR)

Image
Segmentation

W

ILFHMSR [ﬁr ﬁ]

Figure 1. Proposed LF block matching super-resolution technique. Interpolation approach is used to enhance spatial resolution by 4x4 to preserve effi-
ciently sharpness. LFBMSR is the process of narrowing down the block search area in neighboring VPs. The combination of MISR and HYSISR are
performed using Laplacian Pyramid in order to develop a HY SR image. In comparison, the LFBMSR outperforms both MISR and HYSISR in terms of

the numbers and quality of the image generated.

their proposed technique, the evaluated camera with the current
LFSR does not rely on its preset parameters. A simple method to
light field block matching (LFBM) lies in applying recent block
matching approaches to the VPs independently. Four articles [16,
17, 18, 19] are noted for the reader for reviews of the BM ap-
proaches applied to 2D and 3D images. The authors in [19] pro-
posed method based on adaptive filtering, in order to improve the
robustness of video sequence in real life. However, the proven de-
termination upgrade factor of nonlocal strategies has for the most
part been unassuming. Moreover, nonlocal procedures encounter
piece coordinating challenges with vast relocations, rotational
movement, and obscured edges. The EPIs technique is used to
process the redundancies that exists between the VPs. The two
advance approaches suggested in [20] which initially denoises
EPIs, brought a certain spatial as well as an angular dimension
(for instance sx-plane), and after that procedures, this initial meas-
ure utilizing the corresponding EPIs (i.e., yz-plane). Nonetheless,
the above approaches merely take into consideration the 2D facets
of the 4D LF. Despite the fact that these techniques misuse en-
tirely the 4D structure of the LF, they neglect to bypass the video
block matching 4D (VBM4D). For basic knowledge of BM3D,
we recommend the work presented in [21] for readers because the
image block matching methods discussed in the study have
demonstrated high performance. The proposed LFBMSR in this
paper is an extension of LFSR. We demonstrate that by altogether
considering the 4D LF structure, we can fundamentally outper-
form the compete methods. In the following section we explain
our proposed method. A block-scheme for the proposed LFBMSR
method is presented in Figure 1.

3. BLOCK MATCHING SUPER-RESOLUTION

The LF is expressed as a 4D function'. QxII —
R, (x,y,s,t) = L(x,y,s,t) where Q denotes the light rays’ spa-
tial distribution, ordered by (x, y), whereas II represents their an-
gular distribution, ordered by (s,t). Hence, the LFBMSR is a
novel approach added to our recent method in [2]. We have ex-
ploited in our method a corresponding two-step technique as
BM3D. Firstly, we produce the first estimation (i.e., first iteration)
in order to find the best similar block matching between all sub-
aperture views; or viewpoint images (VPs). Secondly, we utilized
the first estimate to implement the 4D transform domain and pro-
duce the estimated high-resolution image. We demonstrate the
method implementation in detail. Firstly, a certain VP, referred to
as the reference VP, is chosen as the central VP of LF. Secondly,
we iterate over VPs to find similar blocks to the selected reference
VP. Furthermore, the neighboring VPs which are found within the
search window of size n, X n, are considered, and all these VPs
are processed together. Thus, recursive iteration is carefully

! Note that we neglect the chromatic and temporal dimensions
and we restrict the VP to a 2D plane here.

performed over the 2D blocks of the reference VP. Furthermore,
4D blocks are generated through the combination of the 2D blocks
of the reference VP and their corresponding neighboring VPs. Ad-
ditionally, another recursive iteration is usually required in order
to process a handful remaining pixels within the surrounding VPs.
Finally, another reference VP will be chosen from the remaining
VPs when the former reference VP and the surrounding neighbor-
ing VPs have been completely processed.

3.1 Blocks Formation

We denote by B the reference current block of size k X k in
the reference VP I.r, we create a 4D by exploiting redundancies
within I.., and its neighboring VPs {Islt}, (s,t) €[1,n,] %
[1,n,] 4D block is generated by searching all the neighboring
VPs of the 2D block nearest to B that could be aligned to a dispar-
ity compensation step by applying block matching technique.
Originally, we defined the 4D block dimensionn, X n, Xk Xk
as:

By (B) ={R}" : R* = argmind(B,R;;), Rs; €
Fw3r d(B,RY) < 14} 1)

with d(B, R) representing the aligned quadratic distance which
separates the different blocks, F Wfi',t denotes the search window
over I with size ng X ng focused on the location of B. Whereas
T4 represents the specified distance threshold for d over which
set of blocks are usually considered similar. Consequently, the
threshold 74 aims to identify and reject certain blocks that are not
satisfactorily similar in every respect to the selected reference
block, and as a result, to be strong against occlusions. Figure 2,
shows the search window of the BMSR algorithm outline.

Figure 2. Search window of the BMSR algorithm outline. With the help
of the search window, the VPs of each LF are processed in iteration by
taking into consideration, the reference VP alongside its surrounding
VPs. 4D blocks are usually acquired when VPs are processed with an-
gular search window through the use of disparity compensated 2D
blocks within the surrounding VPs with regard to a 2D block in the ref-
erence VP.



3.2 Self-Similarities

The search is then done for the set of neighboring blocks sim-
ilar to the reference selected VP block B , which is defined by:

Bsim (B) = {Rsim : d(B! Rsim) < TsimRsim € FWsim} (2)

Where tg;,,, represents the threshold for d distance in which
blocks are considered similar. Further, both FW;,, and F Wfi',t
represents the search window in the term I . of size ngy X ng cen-
tered on the position of B. We then map and combine all similar
blocks to perform a higher quality image.

4. HYBRID LIGHT FIELD SUPER-RESOLUTION

To get to the final super-resolution image, we take the merit
of our recent approach LFHYSR, which is used directly after we
apply LFBMSR. The method is based on a combination of two
classical approaches I;sr and Iy gsp. For more details see [2]
Formally, the LFBMSR equation is formed as:

Esr(X) = X ” y(k) — Iyysg + Tyysisr ” 3

Where Egp represents the energy function and y (k) represents the
VPs, the two approaches I,;sz and I yyg;sg represents the obser-
vation method and the hybrid example-based method. We gener-
ate the Vps yk<) by factor 4x4, using directional adapting inter-
polation to get x(°), and is up sampled up to the size of x by using
our LFHYSR by factor 8x8. The advantage of using this combi-
nation depends on the fact that none of the recent approaches have
combined MISR and HYSISR and exploits them to LF images.
The gain is important for LF cameras to enhance the resolution.

Algorithm: Light field Block Matching Super-resolution

Input: Viewpoint images (VPs) as y® generated from the
plenoptic RAW data
1. To enhance the VPs resolution, do the following
a)  Apply directional adapting interpolation
1. To apply LFBMSR do the following
b) Extract the depth information from the y®
¢) Construction of blocks n, X n, X k Xk
d) In the reference VPs, we search for the set of blocks
similar to B
e) Aggregation or mapping and 4D transform
2. To process LFHYSR do the following
f)  Apply (MISR) I;sr for method one
g) Apply (HYSISR) Iyg;sg for method two
3. To blend the two methods, the following is done
h) Pixel values of both methods are added to Iy g
4. To segment and process the object’s mask I yysg
i)  For each pixel in I yysp identify sharp pixels Is.ore
j)  From pixels in I, generate clusters
k) Clusters are all connected to one contiguous re-
gion I 4y,
1)  All neighbors of similar color create set of regions
R p0r in €ach pixel in I ),
m) Relevance score is updated for each region in R,
n) To generate segmented image the noise is eliminated
5. To super resolve the segmented image apply SRR
Output: Super Resolution Image x

5. EXPERIMENTAL RESULTS

In our experiment, we compared our LFBMSR perfor-
mance’s approach with the recent outstanding methods LFSR ap-
proaches and the evaluation is done taking into account the objec-
tive quality and visual impression. We perform our experiment
from real data (i.e., raw images), L(u, v, s, t) two of which were
obtained by our plenoptic camera, Numbers and Toy, whereas
the Knights image was taken by Stanford University, which are
reconstructed with size 9 x 9 VPs. All VPs resolution were set to
2248 x 1488. For testing we have used several views from the raw
image (i.e., 3x3, 4x3, 5x4 and 5x5) as it is a free choice between
the 9x9 views extracted. Each VP is partitioned into 4D macro
blocks, where the maximum displacement within the search space
is £7 pixels in horizontal as well as vertical directions for all data
used (Numbers, Toy, Knights).

During implementation, we had an error while increasing the
window size FW, (i.e., 11 X 11 and 23 X 23); and we tested the
pixels’ behavior to find the best block match in all views to deter-
mine if the problem was in block matching or depth information.
By using general block matching and the method of BMSR, we
developed binary images and exploited them to identify the pixels
to see which pixel defines the best match for each view. Then, we
applied that again without constraint. This was repeated for all
competed methods, MISR, HYSISR and the method in [14]. Be-
cause the depth can change when moving right or lift, some pixels
are not visible because of occlusion; this can confuse the block
matching. Thus, the depth estimation method we used is too ran-
dom. Therefore, we utilized a different depth estimation method
from [9], which is better and meaningful. Thus, the window size
is set to £7 pixels. The outcome results have improved after fixing
the error. The quality of our method is measured by creating a
ground truth image from LR images by the VPs such that each VP
has 281x186 image resolution. The Matlab (R2014b) environ-
ment is utilized for all the experiments. The quality is evaluated
with competing approaches in terms of PSNR, SSIM. The method
was compared to our recent LFHY SR approach [2], bicubic inter-
polation, Wanner and Goldluecke [14], MISR [12] and HYSISR
[13]. For visual comparison results, see Figure 3.

Table 1: Results of the average PSNR and SSIM (5x5 Views)

Methods PSNR(dB) SSIM
Toy Numb. Knights Toy Numb. Knights
Bicubic | 3427 | 3471 3490 | 09211 | 09354 | 0.9367
HYSISR | 3553 | 3573 3586 | 09417 | 09388 | 0.939
MISR 3570 | 35.96 3621 | 09429 | 09413 | 0.9423
Wanneret | 3659 | 3644 36.67 | 09434 | 09438 | 0.9456
al [14]
LFHYSR | 3645 | 36.71 36.82 | 09437 | 09498 | 0.9510
LFBMSR | 3003 | 3693 | 3711 | 09458 | 09521 | 09532
(Ours)
Gain over
MISR 1.03 0.97 0.90 0.0029 | 0.0108 | 0.0109

6. CONCLUSION

Our paper has implemented a novel LFBMSR method. The
results were evaluated to the recent LFSR algorithms and com-
pared with respect to objective quality as well as visual impression
and outperform all comparison state-of-the-art methods with a to-
tal average achieved over MISR with respect to PSNR in tune of
up to 1.06 dB and 0.97 dB; as well as 0.0108 and 0.0029 for SSIM,
respectively, for the ‘Numbers’ and ‘Toy’ images, and 0.90 and
0.0109 for ‘Knights’ image. This is achieved by searching for the
best similar blocks in all VPs and super resolving the final image
using our LFHYSR approach.



Numbers
s

Ground truth HYSISR [13] MISR [12] Wanner et al [14] Proposed
(b)
Figure 3. (a) Shows central view point images extracted from RAW images (Upper). Enhanced resolution image obtained after using our proposed
LFBMSR method (Lower). (b) A close-up of all competitive super-resolved images.
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