6 research outputs found

    Artificial Intelligence in Energy Demand Response: A Taxonomy of Input Data Requirements

    Get PDF
    The ongoing energy transition increases the share of renewable energy sources. To combat inherent intermittency of RES, increasing system flexibility forms a major opportunity. One way to provide flexibility is demand response (DR). Research already reflects several approaches of artificial intelligence (AI) for DR. However, these approaches often lack considerations concerning their applicability, i.e., necessary input data. To help putting these algorithms into practice, the objective of this paper is to analyze, how input data requirements of AI approaches in the field of DR can be systematized from a practice-oriented information systems perspective. Therefore, we develop a taxonomy consisting of eight dimensions encompassing 30 characteristics. Our taxonomy contributes to research by illustrating how future AI approaches in the field of DR should represent their input data requirements. For practitioners, our developed taxonomy adds value as a structuring tool, e.g., to verify applicability with respect to input data requirements

    Artificial Intelligence in Energy Demand Response : A Taxonomy of Input Data Requirements

    Get PDF
    The ongoing energy transition increases the share of renewable energy sources. To combat inherent intermittency of RES, increasing system flexibility forms a major opportunity. One way to provide flexibility is demand response (DR). Research already reflects several approaches of artificial intelligence (AI) for DR. However, these approaches often lack considerations concerning their applicability, i.e., necessary input data. To help putting these algorithms into practice, the objective of this paper is to analyze, how input data requirements of AI approaches in the field of DR can be systematized from a practice-oriented information systems perspective. Therefore, we develop a taxonomy consisting of eight dimensions encompassing 30 characteristics. Our taxonomy contributes to research by illustrating how future AI approaches in the field of DR should represent their input data requirements. For practitioners, our developed taxonomy adds value as a structuring tool, e.g., to verify applicability with respect to input data requirements

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area
    corecore