58,405 research outputs found

    Bayesian models of category acquisition and meaning development

    Get PDF
    The ability to organize concepts (e.g., dog, chair) into efficient mental representations, i.e., categories (e.g., animal, furniture) is a fundamental mechanism which allows humans to perceive, organize, and adapt to their world. Much research has been dedicated to the questions of how categories emerge and how they are represented. Experimental evidence suggests that (i) concepts and categories are represented through sets of features (e.g., dogs bark, chairs are made of wood) which are structured into different types (e.g, behavior, material); (ii) categories and their featural representations are learnt jointly and incrementally; and (iii) categories are dynamic and their representations adapt to changing environments. This thesis investigates the mechanisms underlying the incremental and dynamic formation of categories and their featural representations through cognitively motivated Bayesian computational models. Models of category acquisition have been extensively studied in cognitive science and primarily tested on perceptual abstractions or artificial stimuli. In this thesis, we focus on categories acquired from natural language stimuli, using nouns as a stand-in for their reference concepts, and their linguistic contexts as a representation of the concepts’ features. The use of text corpora allows us to (i) develop large-scale unsupervised models thus simulating human learning, and (ii) model child category acquisition, leveraging the linguistic input available to children in the form of transcribed child-directed language. In the first part of this thesis we investigate the incremental process of category acquisition. We present a Bayesian model and an incremental learning algorithm which sequentially integrates newly observed data. We evaluate our model output against gold standard categories (elicited experimentally from human participants), and show that high-quality categories are learnt both from child-directed data and from large, thematically unrestricted text corpora. We find that the model performs well even under constrained memory resources, resembling human cognitive limitations. While lists of representative features for categories emerge from this model, they are neither structured nor jointly optimized with the categories. We address these shortcomings in the second part of the thesis, and present a Bayesian model which jointly learns categories and structured featural representations. We present both batch and incremental learning algorithms, and demonstrate the model’s effectiveness on both encyclopedic and child-directed data. We show that high-quality categories and features emerge in the joint learning process, and that the structured features are intuitively interpretable through human plausibility judgment evaluation. In the third part of the thesis we turn to the dynamic nature of meaning: categories and their featural representations change over time, e.g., children distinguish some types of features (such as size and shade) less clearly than adults, and word meanings adapt to our ever changing environment and its structure. We present a dynamic Bayesian model of meaning change, which infers time-specific concept representations as a set of feature types and their prevalence, and captures their development as a smooth process. We analyze the development of concept representations in their complexity over time from child-directed data, and show that our model captures established patterns of child concept learning. We also apply our model to diachronic change of word meaning, modeling how word senses change internally and in prevalence over centuries. The contributions of this thesis are threefold. Firstly, we show that a variety of experimental results on the acquisition and representation of categories can be captured with computational models within the framework of Bayesian modeling. Secondly, we show that natural language text is an appropriate source of information for modeling categorization-related phenomena suggesting that the environmental structure that drives category formation is encoded in this data. Thirdly, we show that the experimental findings hold on a larger scale. Our models are trained and tested on a larger set of concepts and categories than is common in behavioral experiments and the categories and featural representations they can learn from linguistic text are in principle unrestricted

    Sketch-a-Net that Beats Humans

    Full text link
    We propose a multi-scale multi-channel deep neural network framework that, for the first time, yields sketch recognition performance surpassing that of humans. Our superior performance is a result of explicitly embedding the unique characteristics of sketches in our model: (i) a network architecture designed for sketch rather than natural photo statistics, (ii) a multi-channel generalisation that encodes sequential ordering in the sketching process, and (iii) a multi-scale network ensemble with joint Bayesian fusion that accounts for the different levels of abstraction exhibited in free-hand sketches. We show that state-of-the-art deep networks specifically engineered for photos of natural objects fail to perform well on sketch recognition, regardless whether they are trained using photo or sketch. Our network on the other hand not only delivers the best performance on the largest human sketch dataset to date, but also is small in size making efficient training possible using just CPUs.Comment: Accepted to BMVC 2015 (oral

    SERKET: An Architecture for Connecting Stochastic Models to Realize a Large-Scale Cognitive Model

    Full text link
    To realize human-like robot intelligence, a large-scale cognitive architecture is required for robots to understand the environment through a variety of sensors with which they are equipped. In this paper, we propose a novel framework named Serket that enables the construction of a large-scale generative model and its inference easily by connecting sub-modules to allow the robots to acquire various capabilities through interaction with their environments and others. We consider that large-scale cognitive models can be constructed by connecting smaller fundamental models hierarchically while maintaining their programmatic independence. Moreover, connected modules are dependent on each other, and parameters are required to be optimized as a whole. Conventionally, the equations for parameter estimation have to be derived and implemented depending on the models. However, it becomes harder to derive and implement those of a larger scale model. To solve these problems, in this paper, we propose a method for parameter estimation by communicating the minimal parameters between various modules while maintaining their programmatic independence. Therefore, Serket makes it easy to construct large-scale models and estimate their parameters via the connection of modules. Experimental results demonstrated that the model can be constructed by connecting modules, the parameters can be optimized as a whole, and they are comparable with the original models that we have proposed

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    One-shot learning of object categories

    Get PDF
    Learning visual models of object categories notoriously requires hundreds or thousands of training examples. We show that it is possible to learn much information about a category from just one, or a handful, of images. The key insight is that, rather than learning from scratch, one can take advantage of knowledge coming from previously learned categories, no matter how different these categories might be. We explore a Bayesian implementation of this idea. Object categories are represented by probabilistic models. Prior knowledge is represented as a probability density function on the parameters of these models. The posterior model for an object category is obtained by updating the prior in the light of one or more observations. We test a simple implementation of our algorithm on a database of 101 diverse object categories. We compare category models learned by an implementation of our Bayesian approach to models learned from by maximum likelihood (ML) and maximum a posteriori (MAP) methods. We find that on a database of more than 100 categories, the Bayesian approach produces informative models when the number of training examples is too small for other methods to operate successfully
    corecore