79 research outputs found

    Free-riding Analysis Via Dynamic Game with Incomplete Information

    Get PDF
    AbstractP2P networks are distributed, acentric and self-organized systems. Due to the incomplete information of network environment, the uncertainty of trust relationship among peers and the selfishness of the peers in P2P networks, which give rise to many free-riders that seriously impact the stability and scalability of P2P networks. In this paper, by analyzing the incomplete information of network environment, the uncertainty of trust relationship among nodes, the phenomenon of the free-riding is studied based on game theory. The IIDGTrust (Incomplete Information Dynamic Game Trust)mechanism is presented through the case “Supplying the Public Resources”. Updating the trust relationship among the nodes according to the Bayesian law, which make nodes choose better strategies in time. The experimental results demonstrate that the IIDGTrust mechanism can effectively reduce the proportion of the free-riders in the P2P networks and maintain the stability of networks better

    Safeguarding E-Commerce against Advisor Cheating Behaviors: Towards More Robust Trust Models for Handling Unfair Ratings

    Full text link
    In electronic marketplaces, after each transaction buyers will rate the products provided by the sellers. To decide the most trustworthy sellers to transact with, buyers rely on trust models to leverage these ratings to evaluate the reputation of sellers. Although the high effectiveness of different trust models for handling unfair ratings have been claimed by their designers, recently it is argued that these models are vulnerable to more intelligent attacks, and there is an urgent demand that the robustness of the existing trust models has to be evaluated in a more comprehensive way. In this work, we classify the existing trust models into two broad categories and propose an extendable e-marketplace testbed to evaluate their robustness against different unfair rating attacks comprehensively. On top of highlighting the robustness of the existing trust models for handling unfair ratings is far from what they were claimed to be, we further propose and validate a novel combination mechanism for the existing trust models, Discount-then-Filter, to notably enhance their robustness against the investigated attacks

    Collusion in Peer-to-Peer Systems

    Get PDF
    Peer-to-peer systems have reached a widespread use, ranging from academic and industrial applications to home entertainment. The key advantage of this paradigm lies in its scalability and flexibility, consequences of the participants sharing their resources for the common welfare. Security in such systems is a desirable goal. For example, when mission-critical operations or bank transactions are involved, their effectiveness strongly depends on the perception that users have about the system dependability and trustworthiness. A major threat to the security of these systems is the phenomenon of collusion. Peers can be selfish colluders, when they try to fool the system to gain unfair advantages over other peers, or malicious, when their purpose is to subvert the system or disturb other users. The problem, however, has received so far only a marginal attention by the research community. While several solutions exist to counter attacks in peer-to-peer systems, very few of them are meant to directly counter colluders and their attacks. Reputation, micro-payments, and concepts of game theory are currently used as the main means to obtain fairness in the usage of the resources. Our goal is to provide an overview of the topic by examining the key issues involved. We measure the relevance of the problem in the current literature and the effectiveness of existing philosophies against it, to suggest fruitful directions in the further development of the field

    Two Species Evolutionary Game Model of User and Moderator Dynamics

    Full text link
    We construct a two species evolutionary game model of an online society consisting of ordinary users and behavior enforcers (moderators). Among themselves, moderators play a coordination game choosing between being "positive" or "negative" (or harsh) while ordinary users play prisoner's dilemma. When interacting, moderators motivate good behavior (cooperation) among the users through punitive actions while the moderators themselves are encouraged or discouraged in their strategic choice by these interactions. We show the following results: (i) We show that the ω\omega-limit set of the proposed system is sensitive both to the degree of punishment and the proportion of moderators in closed form. (ii) We demonstrate that the basin of attraction for the Pareto optimal strategy (Cooperate,Positive)(\text{Cooperate},\text{Positive}) can be computed exactly. (iii) We demonstrate that for certain initial conditions the system is self-regulating. These results partially explain the stability of many online users communities such as Reddit. We illustrate our results with examples from this online system.Comment: 8 pages, 4 figures, submitted to 2012 ASE Conference on Social Informatic

    High Quality P2P Service Provisioning via Decentralized Trust Management

    Get PDF
    Trust management is essential to fostering cooperation and high quality service provisioning in several peer-to-peer (P2P) applications. Among those applications are customer-to-customer (C2C) trading sites and markets of services implemented on top of centralized infrastructures, P2P systems, or online social networks. Under these application contexts, existing work does not adequately address the heterogeneity of the problem settings in practice. This heterogeneity includes the different approaches employed by the participants to evaluate trustworthiness of their partners, the diversity in contextual factors that influence service provisioning quality, as well as the variety of possible behavioral patterns of the participants. This thesis presents the design and usage of appropriate computational trust models to enforce cooperation and ensure high quality P2P service provisioning, considering the above heterogeneity issues. In this thesis, first I will propose a graphical probabilistic framework for peers to model and evaluate trustworthiness of the others in a highly heterogeneous setting. The framework targets many important issues in trust research literature: the multi-dimensionality of trust, the reliability of different rating sources, and the personalized modeling and computation of trust in a participant based on the quality of services it provides. Next, an analysis on the effective usage of computational trust models in environments where participants exhibit various behaviors, e.g., honest, rational, and malicious, will be presented. I provide theoretical results showing the conditions under which cooperation emerges when using trust learning models with a given detecting accuracy and how cooperation can still be sustained while reducing the cost and accuracy of those models. As another contribution, I also design and implement a general prototyping and simulation framework for reputation-based trust systems. The developed simulator can be used for many purposes, such as to discover new trust-related phenomena or to evaluate performance of a trust learning algorithm in complex settings. Two potential applications of computational trust models are then discussed: (1) the selection and ranking of (Web) services based on quality ratings from reputable users, and (2) the use of a trust model to choose reliable delegates in a key recovery scenario in a distributed online social network. Finally, I will identify a number of various issues in building next-generation, open reputation-based trust management systems as well as propose several future research directions starting from the work in this thesis

    Thwarting Sybil Attackers in Reputation-based Scheme in Mobile Ad hoc Networks

    Get PDF
    Routing in mobile ad hoc networks is performed in a distributed fashion where each node acts as host and router, such that it forwards incoming packets for others without relying on a dedicated router. Nodes are mostly resource constraint and the users are usually inclined to conserve their resources and exhibit selfish behaviour by not contributing in the routing process. The trust and reputation models have been proposed to motivate selfish nodes for cooperation in the packet forwarding process. Nodes having bad trust or reputation are detected and secluded from the network, eventually. However, due to the lack of proper identity management and use of non-persistent identities in ad hoc networks, malicious nodes can pose various threats to these methods. For example, a malicious node can discard the bad reputed identity and enter into the system with another identity afresh, called whitewashing. Similarly, a malicious node may create more than one identity, called Sybil attack, for self-promotion, defame other nodes, and broadcast fake recommendations in the network. These identity-based attacks disrupt the overall detection of the reputation systems. In this paper, we propose a reputation-based scheme that detects selfish nodes and deters identity attacks. We address the issue in such a way that, for normal selfish nodes, it will become no longer advantageous to carry out a whitewash. Sybil attackers are also discouraged (i.e., on a single battery, they may create fewer identities). We design and analyse our rationale via game theory and evaluate our proposed reputation system using NS-2 simulator. The results obtained from the simulation demonstrate that our proposed technique considerably diminishes the throughput and utility of selfish nodes with a single identity and selfish nodes with multiple identities when compared to the benchmark scheme
    • …
    corecore